Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{x-1}{2015}+\frac{x-2}{2014}=\frac{x-3}{2013}+\frac{x-4}{2012}\)
\(\Rightarrow\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)=\left(\frac{x-3}{2013}-1\right)+\left(\frac{x-4}{2012}-1\right)\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}=\frac{x-2016}{2013}+\frac{x-2016}{2012}\)
\(\Rightarrow\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2016}{2013}-\frac{x-2016}{2012}=0\)
\(\Rightarrow\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)=0\)
Vì \(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\ne0\Rightarrow x-2016=0\)
\(\Rightarrow x=2016\)
b) \(\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}=\frac{x-4}{2001}\)
\(\Rightarrow\frac{x-1}{2004}+\frac{x-2}{2003}-\frac{x-3}{2002}-\frac{x-4}{2001}=0\)
\(\Rightarrow\left(\frac{x-1}{2004}-1\right)+\left(\frac{x-2}{2003}-1\right)-\left(\frac{x-3}{2002}-1\right)-\left(\frac{x-4}{2001}-1\right)=0\)
\(\Rightarrow\frac{x-2005}{2004}+\frac{x-2005}{2003}-\frac{x-2005}{2002}-\frac{x-2005}{2001}=0\)
\(\Rightarrow\left(x-2005\right)\left(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\right)=0\)
vì \(\frac{1}{2004}+\frac{1}{2003}-\frac{1}{2002}-\frac{1}{2001}\ne0\Rightarrow x-2005=0\)
\(\Rightarrow x=2005\)
c) \(|5x-3|\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc - (5x-3) \(\ge7\)
\(\Rightarrow5x-3\ge7\) hoặc \(-5x+3\ge7\)
\(\Rightarrow5x\ge10\) hoặc \(-5x\ge4\)
\(\Rightarrow x\ge2\) hoặc \(x\le\frac{4}{-5}\)
k nhé!!! Kp luôn nha!
a) (x-5)x+2015 - (x-5)x+2014 =0
(x-5)x+2014(x-5 -1) =0
+ x -5 =0 => x =5
+ x -6 =0 => x =6
Vậy x = 5 hoặc x =6
a)(x-2016)^x.(x-2016)-(x-2015)^x.(x-2015)^10=0
mik chỉ làm đc đến đây thôi mk lớp 6 :)
a)Đặt \(A=2^{2016}+2^{2015}+...+2^1+2^0\)
\(2A=2\left(1+2+...+2^{2016}\right)\)
\(2A=2+2^2+...+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\) thay vào ta có:
\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)
b)Ta thấy: \(\left|x\left(x-4\right)\right|\ge0\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
Ta có: \(x\left|x-4\right|=x\left(x\ge0\right)\)
- Nếu x=0 thì 0|0-4|=0 (đúng)
- Nếu x\(\ne\)0 thì ta có \(\left|x-4\right|=1\Leftrightarrow x-4=\pm1\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=3\end{array}\right.\)
Vậy x=0;x=5;x=3 (thỏa mãn)
a) Đặt \(B=2^{2016}+2^{2015}+...+2^1+2^0\)
\(\Rightarrow B=1+2+...+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=\left(2+2^2+...+2^{2016}+2^{2017}\right)-\left(1+2+...+2^{2015}+2^{2016}\right)\)
\(\Rightarrow B=2^{2017}-1\)
Mà \(A=2^{2017}-B\)
\(\Rightarrow A=2^{2017}-\left(2^{2017}-1\right)\)
\(\Rightarrow A=1\)
Vậy A = 1
x + (x+1) +(x+2) +...+(x+2003)=2004
=> (x+0) + (x+1) +(x+2) +...+(x+2003)=2004
<=> có 2004 cặp
=> (x+x+x+...+x) + (0+1+2+...+2003) = 2004
=> 2004x + 2017026 = 2004
2004x = 2004 - 2017026
2004x = -2015022
x = -2015022 : 2004
x = -1005,5
x+(x+1)+(x+2)+...+(x+2003)=2004
<=>(x+0)+(x+1)+(x+2)+...+(x+2003)=2004
=>Có 2004 cặp số
<=>(x+x+x+...+x)+(0+1+2+...2003)=2004
<=>2004x+2017026=2004
2004x=2004-2017026
2004x=-2015022
x=-2015022:2004
x=-1005,5
Vậy x =-1005,5
1) x (x-2016) + 2015 (2016-x) = 0
x (x-2016) - 2015 (x- 2016) = 0
(x-2015)(x-2016) =0
\(\Rightarrow\orbr{\begin{cases}x-2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2015\\x=2016\end{cases}}}\)
Vậy x= 2015; 2016
2) -5x (x-15) + (15-x) = 0
-5x (x-15) - (x-15) =0
(-5x -1) (x-15) =0
\(\Rightarrow\orbr{\begin{cases}-5x-1=0\\x-15=0\end{cases}\Rightarrow\orbr{\begin{cases}-5x=1\\x=15\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{5}\\x=15\end{cases}}}\)
Vậy x= -1/5; 15
3) 3x (3x-7) - (7-3x) =0
3x(3x-7) + (3x -7) =0
(3x+1) (3x-7) =0
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\3x-7=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\3x=7\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=\frac{7}{3}\end{cases}}}\)
Vậy x= -1/3 ; 7/3