Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(\left|x-\dfrac{2}{3}\right|\ge0;\forall x\)
Mà \(-\dfrac{26}{\sqrt{81}}< 0\)
\(\Rightarrow\) Không tồn tại x để \(\left|x-\dfrac{2}{3}\right|< -\dfrac{26}{\sqrt{81}}\)
Hay ko tồn tại số nguyên x thỏa mãn đề bài
=> \(\frac{x+2}{10^{10}}+\frac{x+2}{11^{11}}-\frac{x+2}{12^{12}}-\frac{x+2}{13^{13}}=0\)
=> (x + 2)(\(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\)) = 0
=> x + 2 = 0 (vì \(\frac{1}{10^{10}}+\frac{1}{11^{11}}-\frac{1}{12^{12}}-\frac{1}{13^{13}}\)= 0)
=> x = -2
a)\(8\sqrt{x}-3\sqrt{\frac{4}{81}}=5,2\)
\(\Rightarrow8\sqrt{x}-3.\frac{2}{9}=5,2\)
\(\Rightarrow8\sqrt{x}-\frac{2}{3}=5,2\)
\(\Rightarrow8\sqrt{x}=5,2+\frac{2}{3}\)
\(\Rightarrow8\sqrt{x}=\frac{40}{3}\)
\(\Rightarrow\sqrt{x}=\frac{40}{3}:8\)
\(\Rightarrow\sqrt{x}=\frac{5}{3}\)
\(\Rightarrow x=\frac{25}{9}\)
b)\(12-3x^2=10+\sqrt{\frac{25}{16}}\)
\(\Rightarrow12-3x^2=10+\frac{5}{4}\)
\(\Rightarrow12-3x^2=11,25\)
\(\Rightarrow3x^2=12-11,25\)
\(\Rightarrow3x^2=0,75\)
\(\Rightarrow x^2=0,25\)
\(\Rightarrow x=\sqrt{0,25}\)
\(\Rightarrow x=0,5\)
\(\Rightarrow\frac{7}{6}< |x-\frac{2}{3}|< \frac{26}{9}\)
\(\Rightarrow\frac{21}{18}< |x-\frac{2}{3}|< \frac{52}{18}\)
Rùi tự thay vào
\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)
\(\Leftrightarrow\frac{7}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{9}\)
\(\Leftrightarrow\frac{7}{6}< 2\le\left|x-\frac{2}{3}\right|\le2< \frac{26}{9}\)
\(\Leftrightarrow\left|x-\frac{2}{3}\right|=2\)
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=--\frac{4}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{8}{3};-\frac{4}{3}\right\}\)
\(x+12-\sqrt{81}\)\(=81\)
\(x+12-9=81\)
\(x+3=81\)
\(x=81-3\)
\(x=78\)
Vậy \(x=78\)
X+12-√81=81
=|x+12-9-81=0
=|x-78=0
=|x=78