K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2016

\(\sqrt{x^2}=\left|-4\right|\)

\(\Rightarrow\left|x\right|=4\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

\(\sqrt{x^2}=\left|-4\right|\)

\(\Rightarrow\left|x\right|=\left|-4\right|\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

17 tháng 7 2016

ĐKXĐ: \(x\ge0\)

\(x+2\sqrt{x}+1=0\)

\(\Rightarrow\left(\sqrt{x}+1\right)^2=0\)

\(\Rightarrow\sqrt{x}+1=0\)

\(\Rightarrow\sqrt{x}=-1\) (vô nghiệm)

                                                            Vậy  \(x\in\phi\)

17 tháng 7 2016

\(\sqrt{x^2}=3\)

\(\Rightarrow\left|x\right|=3\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

                                                  Vậy x = 3, x = -3

17 tháng 7 2016

\(\sqrt{x^2}=3\)

=>\(x=3\)

17 tháng 7 2016

\(\sqrt{x^2-2x+1}=x+1\)

\(\sqrt{\left(x-1\right)^2}=x+1\)

\(x-1=x+1\)

\(x-x=1+1\)

\(0x=2\)

x thuộc rỗng.

17 tháng 7 2016

Điều kiện nghiệm: \(x\ge-1\)

Ta có: \(\sqrt{x^2-2x+1}=x+1\)

\(\Rightarrow\sqrt{\left(x-1\right)^2}=x+1\)

\(\Rightarrow\left|x-1\right|=x+1\)

\(\Rightarrow\orbr{\begin{cases}x-1=x+1\\x-1=-x-1\end{cases}\Rightarrow\orbr{\begin{cases}0x=2\left(vn\right)\\2x=0\end{cases}\Rightarrow}x=0}\)

                                                  Vậy x = 0

22 tháng 8 2019

Câu 1:

Áp dụng BĐT Cô-si:

\(A=\sqrt{\left(2-x\right)\left(2+x\right)}\le\frac{2-x+2+x}{2}=2\)

Dấu "=" xảy ra \(\Leftrightarrow2-x=2+x\Leftrightarrow x=0\)

Câu 2:

\(B=\sqrt{-x^2+x+\frac{1}{4}}\)

\(B=\sqrt{-\left(x^2-x-\frac{1}{4}\right)}\)

\(B=\sqrt{-\left(x^2-x+\frac{1}{4}-\frac{1}{2}\right)}\)

\(B=\sqrt{-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{2}\right]}\)

\(B=\sqrt{\frac{1}{2}-\left(x-\frac{1}{2}\right)^2}\le\sqrt{\frac{1}{2}}=\frac{\sqrt{2}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{2}\)

31 tháng 10 2017

ĐKXĐ của A : \(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}}\Leftrightarrow x\ge0\)

ĐKXĐ của B : \(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}}\Leftrightarrow x\ge1\)

a) Ta thấy theo điều kiện  \(x\ge0\Rightarrow x+1\ge1\Rightarrow\sqrt{x+1}\ge1\Rightarrow A=\sqrt{x}+\sqrt{x+1}\ge1\)

Ta thấy theo điều kiện   \(x\ge1\Rightarrow x+4\ge5\Rightarrow\sqrt{x-1}\ge0;\sqrt{x+4}\ge5\)

\(\Rightarrow B=\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

b) Ta thấy A = 1 khi \(\hept{\begin{cases}\sqrt{x}=0\\\sqrt{x+1}=1\end{cases}}\Rightarrow x=0\)

Do \(B\ge\sqrt{5}\) mà \(\sqrt{5}>2\) nên phương trình B = 2 vô nghiệm.

31 tháng 10 2017

Hoàng Thị Thu Huyền sao bài của cô ngắn v? Bài em dài lắm ạ. 

Giải:

\(A=\sqrt{x}+\sqrt{x+1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x\ge0\\x+1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ge1\end{cases}}\Leftrightarrow x\ge0}\)

\(B=\sqrt{x+4}+\sqrt{x-1}\) xác định khi và chỉ khi:

\(\hept{\begin{cases}x+4\ge0\\x-1\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-4\\x\ge1\end{cases}}\Leftrightarrow\sqrt{x+1}\ge}1\)

a, Với \(x\ge0\)ta có: \(x+1\ge1\Rightarrow\sqrt{x+1}\ge1\)

Suy ra: \(A=\sqrt{x}+\sqrt{x+1}\ge1\)

Với \(x\ge1\)ta có:

\(x+4\ge1+4\Leftrightarrow x+4\ge5\Leftrightarrow\sqrt{x+4}\ge\sqrt{5}\)

Suy ra: \(B=\sqrt{x+4}+\sqrt{x-1}\ge5\)

b, *\(\sqrt{x}+\sqrt{x+1}=1\)

Điều kiện: \(x\ge0\)

Ta có: \(\sqrt{x}+\sqrt{x+1}\ge1\)

Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x}=0\)và \(\sqrt{x+1}=1\)

Suy ra: \(x=0\)

*\(\sqrt{x+4}+\sqrt{x-1}=2\)

Ta có: \(\sqrt{x+4}+\sqrt{x-1}\ge\sqrt{5}\)

Mà: \(\sqrt{5}>\sqrt{4}\Leftrightarrow\sqrt{5}>2\)

Vậy: Không có giá trị nào của x để \(\sqrt{x+4}+\sqrt{x-1}=2\)

18 tháng 8 2019

ĐK: \(x\ge-1;y\ge0\)

\(x+y+\sqrt{8y}+5=4\sqrt{x+1}+\sqrt{2}\sqrt{xy+y}\)

\(\Leftrightarrow\)\(\left(x+1-4\sqrt{x+1}+4\right)-\left(\sqrt{x+1}\sqrt{2y}-2\sqrt{2y}\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-\sqrt{2y}\left(\sqrt{x+1}-2\right)+y=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-2\right)^2-2\sqrt{\frac{y}{2}}\left(\sqrt{x+1}-2\right)+\frac{y}{2}+\frac{y}{2}=0\)

\(\Leftrightarrow\)\(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}=0\)

Có: \(\left(\sqrt{x+1}-\frac{y}{2}-2\right)^2+\frac{y}{2}\ge0\) ( do \(y\ge0\) ) 

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x+1}-\frac{y}{2}-2=0\\\frac{y}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

... 

18 tháng 8 2019

\(\frac{1}{x}+\frac{25}{y}\ge\frac{\left(1+5\right)^2}{x+y}\ge\frac{6^2}{6}=6\)

Dấu "=" xảy ra khi \(x+y=6\) và \(\frac{1}{x}=\frac{5}{y}=\frac{1+5}{x+y}=\frac{6}{6}=1\)\(\Rightarrow\)\(x=1;y=5\)