Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTNN của biểu thức M
M = \(\left(x-1\right)^4+\left(3-x\right)^4+6\left(x^2-4x+3\right)^2+2013\)
x=\(\sqrt{\frac{2-\sqrt{3}}{2}}\) =\(\sqrt{\frac{4-2\sqrt{3}}{4}}=\frac{\sqrt{3}-1}{2}\)
\(\Rightarrow2x=\sqrt{3}-1\Rightarrow2x+1=\sqrt{3}\Rightarrow\left(2x+1\right)^2=3\Leftrightarrow4x^2+4x+1=3\Leftrightarrow4x^2+4x-2=0\Leftrightarrow2x^2+2x-1=0\)
nên đề bài = \(\left(x^3\left(2x^2+2x-1\right)+1\right)^{2013}+\frac{\left(x\left(2x^2+2x-1\right)-3\right)^{2013}}{x^2\left(2x^2+2x-1\right)-3^{2013}}\)
=\(\left(0+1\right)^{2013}+\frac{\left(0-3\right)^{2013}}{0-3^{2013}}=1+1=2\)
Ta có:
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\\ \Leftrightarrow\left(x^2-x^2-2013\right)\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\\ \Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\left(1\right)\)
Tương tự: \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\left(2\right)\)
Do đó: 2x=-2y
Suy ra: x=-y
Do đó:
\(x^{2013}+y^{2013}=\left(-y\right)^{2013}+y^{2013}=0\left(ĐPCM\right)\)
Chúng ta nhân biểu thức liên hợp
\(\left(x+\sqrt{x^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)=2013\left(1\right)\)
\(\left(y+\sqrt{y^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\left(2\right)\)
Nhân vế với vế của (1) và (2)
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)<=>\(2013.\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)
<=>\(\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\)
Nhân ra
\(xy-y\sqrt{\left(x^2+2013\right)}-x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(3\right)\)Từ biểu thức ban đầu cho ta có
\(xy+y\sqrt{x^2+2013}+x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(4\right)\)Cộng 3 và 4 lại với nhau và bình phương 2 vế lên là ra bạn à
Ta có
\(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
\(\left(\sqrt{y^2+2013}+y\right)\left(\sqrt{y^2+2013}-y\right)=y^2+2013-y^2=2013\)
Mà Theo đề Ra
=>\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)(*)
và \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(**)
Cộng (*) với (**)
=>x+y = -x -y
hay x + y =0
=> A = x+y =0
\(\left(x+\sqrt{x^2+\sqrt{2013}}\right)\left(x-\sqrt{x^2+\sqrt{2013}}\right)=x^2-x^2-\sqrt{2013}=-\sqrt{2013}\) (1)
Theo đề bài và (1) => dpcm
b) theo a có \(y+\sqrt{y^2+\sqrt{2013}}=-x+\sqrt{x^2+\sqrt{2013}}\)(2)
tương tự ta có \(x+\sqrt{x^2+\sqrt{2013}}=-y+\sqrt{y^2+\sqrt{2013}}\)(3)
Cộng 2 vế (2) với (3) => x+y = -x -y
hay 2(x+y) =0 =>S= x+y =0
x=3 nhé bn bạn xét từng số hạng vì chứa giá trị tuyệt đối.............rồi suy ra 1 cái =0 1 cái =1 nha
Chào ng đẹp
VÌ TRỊ TUYỆT ĐỐI LUÔN LỚN HƠN 0 =>......