K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

23 tháng 9 2018

\(P=\frac{1}{xy-xyz-z}+\frac{1}{yz-xyz-x}+\frac{1}{xz-xzy-y}\)  .Do xyz=-z =>-xyz=1 và x+y+z=0 . Thế vào P ta được \(P=\frac{1}{xy+1+x+y}+\frac{1}{yz+1+y+z}+\frac{1}{xz+1+x+z}\)\(P=\frac{1}{\left(x+1\right)\left(y+1\right)}+\frac{1}{\left(y+1\right)\left(z+1\right)}+\frac{1}{\left(x+1\right)\left(z+1\right)}\) =\(\frac{z+1+x+1+y+1}{\left(x+1\right)\left(y+1\right)\left(z+1\right)}\) 

\(P=\frac{3}{xyz+z+xz+yz+xy+1+x+y}\) =\(\frac{3}{xy+yz+xz}\) (Do x+y+z=0; xyz=-1)

x+y+z=0 => (x+y+z)2=0 => x2+y2+z+2(xy+yz+xz)=0 => 2(xy+yz+xz)=-6 => xy+yz+xz=-3 Thế vào P ta được :

\(P=\frac{3}{-3}=-1\) . Chúc bạn học tốt

21 tháng 9 2018

Hình như bạn ghi thiếu đề r . Còn xyz=-1 nữa 

26 tháng 10 2016

Điều kiện \(x,y,z\ge\frac{1}{4}\)

Cộng các phương trình trong hệ được : 

\(2\left(x+y+z\right)=\sqrt{4x-1}+\sqrt{4y-1}+\sqrt{4z-1}\)

\(\Leftrightarrow4\left(x+y+z\right)=2\sqrt{4x-1}+2\sqrt{4y-1}+2\sqrt{4z-1}\)

\(\Leftrightarrow\left(\sqrt{4x-1}-1\right)^2+\left(\sqrt{4y-1}-1\right)^2+\left(\sqrt{4z-1}-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{4x-1}-1=0\\\sqrt{4y-1}-1=0\\\sqrt{4z-1}-1=0\end{cases}}\) \(\Leftrightarrow x=y=z=\frac{1}{2}\)

Từ đó thay vào yêu cầu đề bài để tính.

18 tháng 1 2017

pt 1) x=y=z  Cosi 3 số 

20 tháng 6 2019

Em thử ạ. Bài dài quá em chẳng biết có tính sai chỗ nào hay không nữa ;(

Từ giả thiết ta có: 

\(\hept{\begin{cases}x+y=-\frac{2}{3}\left(z+1\right)\\xy=-\frac{1}{3}\end{cases}}\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy=\frac{4}{9}\left(z+1\right)^2+\frac{2}{3}\)

Và \(\left(x-y\right)^2=\left(x+y\right)^2-4xy=\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}\)

Ta có: \(A=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}\right)+\left(z+1\right)\left(x-y\right)\left(x+y\right)-\left(x-y\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x-y\right)\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^3}\)

\(=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\left(x-y\right)^2}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-\frac{2}{9}\left(z+1\right)^2+\frac{1}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

Ơ....hình như em tính sai chỗ nào rồi:(

20 tháng 6 2019

Nguyễn Khang 

\(A=\frac{\left(x^2+y^2-\frac{1}{3}+\left(z+1\right)\left(x+y\right)-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\)

\(=\frac{\left(\frac{4}{9}\left(z+1\right)^2+\frac{1}{3}-\frac{2}{3}\left(z+1\right)^2-1\right)}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}\) ( như này mới đúng, e thiếu -1 ở tử ) 

\(=\frac{\frac{-2}{9}\left(z+1\right)^2-\frac{2}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=-\frac{1}{2}.\frac{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}{\frac{4}{9}\left(z+1\right)^2+\frac{4}{3}}=\frac{-1}{2}\)