K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2016

<=> (x-7)^x+11 - (x-7)^x+1 = 0 ( chuyển vế cho thành đẳng thức rồi chuyển lại) <=> (x-7)^x+1 [(x-7)^x+10   -1 ] = 0 <=> \(\orbr{\begin{cases}\left(x-7\right)^{x+1}=0\\\left[\left(x-7\right)^{x+10}-1\right]=0\end{cases}\Rightarrow\orbr{\orbr{\orbr{\begin{cases}x-7=0\\\left(x-7\right)^{x+10}=1\end{cases}}}}}\)  => x=7

xét x+10 lẻ => x-7=1 => x=8 

tương tự với x+10 chẳn

9 tháng 7 2017

1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0

\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0

Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10

9 tháng 7 2017

1)  |x + 3| + |2x + y - 4| = 0

\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)

11 tháng 7 2024

Olm chào em, đề bài thiếu dữ liệu em ơi!

24 tháng 6 2016

(x^2+1)(x-1)(x+3)>0

Vì x^2+1>0 với mọi x

nên: (x-1)(x+3)>0

Trường hợp 1:

x-1<0, x+3 <0

Vì x+3 > x-1 nên x+3<0 suy ra x<-3

Trường hợp 2:

x-1>0, x+3>0

Vì x-1<x+3 nên x-1 >0 suy ra x>1

Vậy x<-3 hoặc x>1

24 tháng 6 2016

Vì tích 3 số là số dương nên trong 3 số có thể gồm 2 số âm, 1 số dương hoặc cả 3 số đều dương

TH1: Có 2 số âm, 1 số dương

Trước hết ta có \(x+3>x-1\)

\(x^2+1>x-1\)

Vì vậy \(x-1< 0\)

\(x^2+1>0\) nên \(x+3< 0\)

\(\Rightarrow x< -3\left(< 1\right)\)

TH2: Cả 3 số đều dương

Xét số bé nhất lớn hơn 0:

\(x-1>0\Rightarrow x>1\)

Vậy \(\orbr{\begin{cases}x< -3\\x>1\end{cases}}\)

18 tháng 7 2018

a -5<x<-5 + 15

  -5<x<10

=>x thuộc ( -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9)

b |x|< 2

Mà |x|> hoạc = 0 => x thuộc tập hợp 0 1=> x thuộc tập hợp 0 1 -1

28 tháng 12 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>x≥0 thì  |x| + |x+2| = x + x+2 = 3

=> 2x = 3-2 = 1 => x=1/2 (thỏa mãn)

     + Nếu x<0 thì |x| + |x+2| = -x - x -2 = 3

                  => - 2x - 2 = 3

=> -2x = 5

=> x = -5/2 (thỏa mãn)

8 tháng 3 2018

Để \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\) thì phải có một hoặc ba thừa số bé hơn 0 

Mà \(x^2-10< x^2-7< x^2-4< x^2-1\)

Trường hợp có một thừa số bé hơn 0 : 

\(\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7;x^2-4;x^2-1>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-10< 0\\x^2-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2< 10\\x^2>7\end{cases}}\Leftrightarrow7< x^2< 10\)

\(\Rightarrow\)\(x^2=9\)

\(\Rightarrow\)\(x=\pm3\)

Trường hợp có ba thừa số bé hơn 0 : 

\(\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4;x^2-7;x^2-10< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\Leftrightarrow1< x^2< 4\) ( loại vì \(x\inℤ\) ) 

Vậy \(x=3\) hoặc \(x=-3\)

Học tốt 

28 tháng 6 2017

\(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

=> (x-7)x . (x-7) - (x-7)x . (x-7)11 = 0

=> \(\left(x-7\right)^x.\left[\left(x-7\right)-\left(x-7\right)^{11}\right]=0\)

=> [(x-7) - (x-7)11 ] = 0

=> \(\left\{\left(x-7\right).\left[1-\left(x-7\right)^{10}\right]\right\}=0\)

\(\Rightarrow\orbr{\begin{cases}x-7=0\\1-\left(x-7\right)^{10}=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)^{10}=1\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=7\\\left(x-7\right)^{10}=\left(-1\right)^{10}=1^{10}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=7\\x-7=1\\x-7=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=7\\x=8\\x=6\end{cases}}\)

Vậy x thuộc { 6,7,8}

17 tháng 12 2017

cố đúng k vậy bạn được bn phần trăn ạ