K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2022

\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)

\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}=\dfrac{x-2010}{2007}+\dfrac{x-2010}{2006}\)

\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\right)=0\Leftrightarrow x=2010\)

 

\(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

\(=>\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

\(=>\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

\(=>\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

\(=>x+2010=0\)

\(=>x=-2010\)

11 tháng 8 2016

\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)=\left(\frac{x-3}{2007}-1\right)+\left(\frac{x-4}{2006}-1\right)\)

\(\Leftrightarrow\)\(\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)

\(\Leftrightarrow\)\(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

\(\Leftrightarrow\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

\(\Leftrightarrow x-2010=0\Leftrightarrow x=2010\)

11 tháng 8 2016

\(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

\(\Leftrightarrow\frac{x-1}{2009}+\frac{x-2}{2008}-\frac{x-3}{2007}-\frac{x-4}{2006}=0\)

\(\Leftrightarrow\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)

\(\Leftrightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2008}-\frac{x-2010}{2008}=0\)

\(\Leftrightarrow\left(x-2010\right).\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

        Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2006}-\frac{1}{2005}\) ko thể bằng 0

Suy ra x-2010=0

            x=2010

Vậy x=2010

10 tháng 7 2019

\(\frac{x+1}{2009}+\frac{x+2}{2008}+\frac{x+3}{2007}=\frac{x+10}{2000}+\frac{x+11}{1999}+\frac{x+12}{1998}\)

\(\Leftrightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)+\left(\frac{x+12}{1998}+1\right)\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}=\frac{x+2010}{2000}+\frac{x+2010}{1999}+\frac{x+2010}{1998}\)

\(\Leftrightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}+\frac{x+2010}{2007}-\frac{x+2010}{2000}-\frac{x+2010}{1999}-\frac{x+2010}{1998}=0\)

\(\Leftrightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}-\frac{1}{2000}-\frac{1}{1999}-\frac{1}{1998}\right)=0\)

\(\Leftrightarrow x+2010=0\)

\(\Leftrightarrow x=-2010\)

15 tháng 8 2016

Thiếu đề

hik như x=2010

3 tháng 1 2017

Ta có :

(x+1)/2009 + (x+2)/2008 = (x+3)/2007 + (x+4)/2006
<=> (x+1)/2009 + 1 + (x+2)/2008 + 1 = (x+3)/2007 +1 + (x+4)/2006 + 1
<=> (x+2010)/2009 + (x+2010)/2008 = (x+2010)/2007 + (x+2010)/2006
<=> (x + 2010).[ 1/2009 + 1/2008 - 1/2007 - 1/2006 ] = 0
<=> x = -2010

22 tháng 8 2020

1) Ta có : \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\)

=> x + 1 = 0

=> x = - 1

b) \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

=> \(\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)=\left(\frac{x+2}{2008}+1\right)+\left(\frac{x+1}{2009}+1\right)\)

=> \(\frac{x+2010}{2006}+\frac{x+2010}{2007}=\frac{x+2010}{2008}+\frac{x+2010}{2009}\)

=> \(\left(x+2010\right)\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

Vì \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)

=> x + 2010 = 0

=> x = -2010

c) \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

\(\Rightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)=\left(\frac{x+1975}{75}-1\right)+\left(\frac{x+1969}{69}-1\right)\)

=> \(\frac{x+1900}{45}+\frac{x+1900}{54}=\frac{x+1900}{75}+\frac{x+1900}{69}\)

=> \(\left(x+1900\right)\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

=> \(x+1900=0\left(\text{Vì }\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\ne0\right)\)

=> x = -1900

d) \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

=> \(\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)=\left(\frac{x+2012}{8}+2\right)+\left(\frac{x+2014}{7}+2\right)\)

=> \(\frac{x+2028}{10}+\frac{x+2028}{9}=\frac{x+2028}{8}+\frac{x+2028}{7}\)

=> \(\left(x+2028\right)\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

=> x + 2028 = 0 \(\left(\text{Vì }\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\ne0\right)\)

=> x = -2028

22 tháng 8 2020

1) Ta có: \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

        \(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

        \(\Leftrightarrow\left(x+1\right).\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

  + TH1\(x+1=0\)\(\Leftrightarrow\)\(x=-1\)

  + TH2\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}>\frac{1}{13}\\\frac{1}{11}>\frac{1}{14}\\\frac{1}{12}>0\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}>\frac{1}{13}+\frac{1}{14}\)

            \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)

             mà \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}=0\)

             \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1\)

2) Ta có: \(\frac{x+4}{2006}+\frac{x+3}{2007}=\frac{x+2}{2008}+\frac{x+1}{2009}\)

        \(\Leftrightarrow\left(\frac{x+4}{2006}+1\right)+\left(\frac{x+3}{2007}+1\right)-\left(\frac{x+2}{2008}+1\right)-\left(\frac{x+1}{2009}+1\right)=0\)

        \(\Leftrightarrow\frac{x+2010}{2006}+\frac{x+2010}{2007}-\frac{x+2010}{2008}-\frac{x+2010}{2009}=0\)

        \(\Leftrightarrow\left(x+2010\right).\left(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)

  + TH1\(x+2010=0\)\(\Leftrightarrow\)\(x=-2010\)

  + TH2\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{2006}>\frac{1}{2008}\\\frac{1}{2007}>\frac{1}{2009}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}>\frac{1}{2008}+\frac{1}{2009}\)

              \(\Rightarrow\)\(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}>0\)

               mà \(\frac{1}{2006}+\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2010\)

3) Ta có: \(\frac{x+1945}{45}+\frac{x+1954}{54}=\frac{x+1975}{75}+\frac{x+1969}{69}\)

        \(\Leftrightarrow\left(\frac{x+1945}{45}-1\right)+\left(\frac{x+1954}{54}-1\right)-\left(\frac{x+1975}{75}-1\right)-\left(\frac{x+1969}{69}-1\right)=0\)

        \(\Leftrightarrow\frac{x+1900}{45}+\frac{x+1900}{54}-\frac{x+1900}{75}-\frac{x+1900}{69}=0\)

       \(\Leftrightarrow\left(x+1900\right).\left(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}\right)=0\)

  

  + TH1\(x+1900=0\)\(\Leftrightarrow\)\(x=-1900\)

  + TH2\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{45}>\frac{1}{75}\\\frac{1}{54}>\frac{1}{69}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}>\frac{1}{75}+\frac{1}{69}\)

              \(\Rightarrow\)\(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}>0\)

               mà \(\frac{1}{45}+\frac{1}{54}-\frac{1}{75}-\frac{1}{69}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-1900\)

4) Ta có: \(\frac{x-99}{5}+\frac{x-97}{7}=\frac{x-95}{9}+\frac{x-93}{11}\)

         \(\Leftrightarrow\left(\frac{x-99}{5}-1\right)+\left(\frac{x-97}{7}-1\right)-\left(\frac{x-95}{9}-1\right)-\left(\frac{x-93}{11}-1\right)=0\)

         \(\Leftrightarrow\frac{x-104}{5}+\frac{x-104}{7}-\frac{x-104}{9}-\frac{x-104}{11}=0\)

         \(\Leftrightarrow\left(x-104\right).\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)=0\)

  

  + TH1\(x-104=0\)\(\Leftrightarrow\)\(x=104\)

  + TH2\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{5}>\frac{1}{7}\\\frac{1}{9}>\frac{1}{11}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}>\frac{1}{9}+\frac{1}{11}\)

              \(\Rightarrow\)\(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}>0\)

               mà \(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=104\)

5) Ta có: \(\frac{x+2008}{10}+\frac{x+2010}{9}=\frac{x+2012}{8}+\frac{x+2014}{7}\)

        \(\Leftrightarrow\left(\frac{x+2008}{10}+2\right)+\left(\frac{x+2010}{9}+2\right)-\left(\frac{x+2012}{8}+2\right)-\left(\frac{x+2014}{7}+2\right)=0\)

        \(\Leftrightarrow\frac{x+2028}{10}+\frac{x+2028}{9}-\frac{x+2028}{8}-\frac{x+2028}{7}=0\)

        \(\Leftrightarrow\left(x+2028\right).\left(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}\right)=0\)

    + TH1\(x+2028=0\)\(\Leftrightarrow\)\(x=-2028\)

    + TH2\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

      Vì \(\hept{\begin{cases}\frac{1}{10}< \frac{1}{8}\\\frac{1}{9}< \frac{1}{7}\end{cases}}\)\(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}< \frac{1}{8}+\frac{1}{7}\)

              \(\Rightarrow\)\(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}< 0\)

               mà \(\frac{1}{10}+\frac{1}{9}-\frac{1}{8}-\frac{1}{7}=0\)

               \(\Rightarrow\)Phương trình trên vô nghiệm

Vậy \(x=-2028\)

Chúc bn hok tốt nha

28 tháng 9 2019

Tham khảo:

undefined

19 tháng 7 2015

 bạn xem tại đây nhé ^^

19 tháng 7 2015

dang phuong thao la loai copy cua olm ma

18 tháng 7 2017

\(3.\)

\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}=\frac{x-4}{2008}\)

\(\Rightarrow\)\(\frac{x-1}{2011}-1+\frac{x-2}{2010}-1+\frac{x-3}{2009}-1-\frac{x-4}{2008}+1+2=0\)

\(\Rightarrow\)\(\frac{x-1}{2011}-\frac{2011}{2011}+\frac{x-2}{2010}-\frac{2010}{2010}+\frac{x-3}{2009}-\frac{2009}{2009}-\frac{x-4}{2008}+\frac{2008}{2008}=0\)

\(\Rightarrow\)\(\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}-\frac{x-2012}{2008}=0\)

\(\Rightarrow\)\(x-2012\left(\frac{1}{2011}+\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)

\(\Rightarrow\)\(x=2012\)