K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Ta có : |x - 1| + |y + 1| = 0

Mà : |x - 1| \(\ge0\forall x\in R\)

       |y + 1| \(\ge0\forall x\in R\)

Nên : |x - 1| = |y + 1| = 0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\y=-1\end{cases}}\)

25 tháng 6 2017

thanks bn nha!!!!!

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:

a. $x=|x+1|+|x+2|+|x+3|\geq 0$

$\Rightarrow x+1>0; x+2>0; x+3>0$

$\Rightarrow |x+1|=x+1; |x+2|=x+2; |x+3|=x+3$. Do đó:

$(x+1)+(x+2)+(x+3)=x$

$3x+6=x$

$2x+6=0$

$x=-3< 0$ (vô lý)

Vậy pt vô nghiệm.

b.

$|2x+1|\geq 0$

$|x-y+1|\geq 0$

Do đó để tổng của chúng bằng $0$ thì:

$2x+1=x-y+1=0$

$\Leftrightarrow x=\frac{-1}{2}; y=\frac{1}{2}$

c.

$|x-3|=x-3$

$\Leftrightarrow x\geq 3$

c: Ta có: \(\left|x-3\right|+3=x\)

\(\Leftrightarrow\left|x-3\right|=x-3\)

\(\Leftrightarrow x-3\ge0\)

hay \(x\ge3\)