K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2020

a) \(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)

\(\Leftrightarrow x-\sqrt{3}=\pm\frac{\sqrt{3}}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{3}=-\frac{\sqrt{3}}{2}\\x-\sqrt{3}=\frac{\sqrt{3}}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{3}}{2}\\\frac{3\sqrt{3}}{2}\end{cases}}\)

Nghiệm cuối cùng là : \(x_1=\frac{\sqrt{3}}{2};x_2=\frac{3\sqrt{3}}{2}\)

b) || 6x - 2  | - 5 | = 2016. x -2017 

<=> || 6x - 2 | -5 | -2016x = -2017

<=> \(\orbr{\begin{cases}\left|6x-2\right|-5-2016.x=-2017,\left|6x-2\right|-5\ge0\\-\left(\left|6x-2\right|-5\right)-2016x=-2017,\left|6x-2\right|-5< 0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1,x\in\left[-\infty,-\frac{1}{2}\right];\left[\frac{7}{6};+\infty\right]\\x=\frac{1012}{1011},x\in\left[-\frac{1}{2},\frac{7}{6}\right]\end{cases}}\)

<=>\(\orbr{\begin{cases}x\in\varnothing\\x=\frac{1012}{1011}\end{cases}}\)

Vậy x = \(\frac{1012}{1011}\)

24 tháng 2 2020

a, Ta có:
\(\orbr{\begin{cases}x-\sqrt{\frac{3}{4}}=\sqrt{\frac{3}{4}}\\x-\sqrt{\frac{3}{4}}=-\sqrt{\frac{3}{4}}\end{cases}\Rightarrow\orbr{\begin{cases}x=2\sqrt{\frac{3}{4}}\\x=0\end{cases}}}\)

24 tháng 2 2020

mình xin lỗi , mình ghi sai đề

a)\(\left(x-\sqrt{3}\right)^2=\frac{3}{4}\)

28 tháng 11 2016

Bài 2:

a) \(\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|-6x=0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=6x\)

Ta có: \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+4\right|\ge0;\left|x+5\right|\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|\ge0\)

\(\Rightarrow6x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+4\right|+\left|x+5\right|=x+1+x+2+x+4+x+5=6x\)

\(\Rightarrow4x+12=6x\)

\(\Rightarrow2x=12\)

\(\Rightarrow x=6\)

Vậy x = 6

b) Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-2}{2}=\frac{y-3}{3}=\frac{z-3}{4}=\frac{2y-6}{6}=\frac{3z-9}{12}=\frac{x-2-2y+6+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)-\left(2-6+9\right)}{8}\)

\(=\frac{14-5}{8}=\frac{9}{8}\)

+) \(\frac{x-2}{2}=\frac{9}{8}\Rightarrow x-2=\frac{9}{4}\Rightarrow x=\frac{17}{4}\)

+) \(\frac{y-3}{3}=\frac{9}{8}\Rightarrow y-3=\frac{27}{8}\Rightarrow y=\frac{51}{8}\)

+) \(\frac{z-3}{4}=\frac{9}{8}\Rightarrow z-3=\frac{9}{2}\Rightarrow z=\frac{15}{2}\)

Vậy ...

c) \(5^x+5^{x+1}+5^{x+2}=3875\)

\(\Rightarrow5^x+5^x.5+5^x.5^2=3875\)

\(\Rightarrow5^x.\left(1+5+5^2\right)=3875\)

\(\Rightarrow5^x.31=3875\)

\(\Rightarrow5^x=125\)

\(\Rightarrow5^x=5^3\)

\(\Rightarrow x=3\)

Vậy x = 3

28 tháng 11 2016

@@ good :D

18 tháng 10 2018

\(3\frac{1}{2}-\frac{1}{2}.\left(-4,25-\frac{3}{4}\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-4,25-0,75\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.\left(-5\right)^2:\frac{5}{4}\)

\(=\frac{7}{2}-\frac{1}{2}.5.\frac{4}{5}\)

\(=\frac{7}{2}-2\)

\(=\frac{7}{2}-\frac{4}{2}\)

\(=\frac{3}{2}\)

\(\frac{3}{7}.1\frac{1}{2}+\frac{3}{7}.0,5-\frac{3}{7}.9\)

\(=\frac{3}{7}.\left(\frac{3}{2}+\frac{1}{2}-9\right)\)

\(=\frac{3}{7}.\left(2-9\right)\)

\(=\frac{3}{7}.\left(-7\right)\)

\(=-3\)

\(\frac{125^{2016}.8^{2017}}{50^{2017}.20^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^2\right)^{2017}.2^{2017}.\left(2^2\right)^{2018}.5^{2018}}=\frac{\left(5^3\right)^{2016}.\left(2^3\right)^{2017}}{\left(5^3\right)^{2017}.\left(2^3\right)^{2017}.2.5}=\frac{1}{5^4.2}=\frac{1}{1250}\)( tính nhẩm, ko chắc đúng )

18 tháng 10 2018

a) \(3\frac{1}{2}-\frac{1}{2}\cdot\left(-4,25-\frac{3}{4}\right)^2\) : \(\frac{5}{4}\)

\(3\cdot25:\frac{5}{4}\)

\(3\cdot\left(25:\frac{5}{4}\right)\)

=\(3\cdot20\)

=60

b)=\(\frac{3}{7}\cdot\left(1\frac{1}{2}+0,5-9\right)\)

=\(\frac{3}{7}\cdot\left(-7\right)\)

=\(-3\)

c) = 

26 tháng 2 2020
  • CCCCCCCCCCCChiuj
26 tháng 2 2020

6x-2-5=2016x-2017

6x-7=2016x-2017

2016x-6x=2017-7

2010x=2010

x=1

1 tháng 11 2018

1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)

\(2^x.2^2.3^x.3.5^x=10800\)

\(\Rightarrow\left(2.3.5\right)^x.12=10800\)

\(\Rightarrow30^x=\frac{10800}{12}=900\)

\(\Rightarrow30^x=30^2\)

\(\Rightarrow x=2\)

b,\(3^{x+2}-3^x=24\)

\(\Rightarrow3^x\left(3^2-1\right)=24\)

\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)

2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

Dấu bằng xảy ra khi \(ab\ge0\)

Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)

 \(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)

Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)

Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)

d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)

Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)

Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)

\(\Rightarrow B\le1\)

Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)

\(\Rightarrow x\le2017\)

Vậy \(Max_B=1\) khi \(x\le2017\)

1 tháng 11 2018

để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)

suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)

Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3

\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))

Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!

19 tháng 2 2018

      \(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+5}{324}+1 +\frac{x+349}{5}-4=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

\(\Leftrightarrow\)\(x+329=0\)   (vì  1/327 + 1/326 + 1/325 + 1/324 + 1/5  khác  0  )

\(\Leftrightarrow\)\(x=-329\)

19 tháng 2 2018

Bài 1 : 

\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+5}{324}+\frac{x+349}{5}=0\)

\(\Leftrightarrow\)\(\left(\frac{x+2}{327}+1\right)+\left(\frac{x+3}{326}+1\right)+\left(\frac{x+4}{325}+1\right)+\left(\frac{x+5}{324}+1\right)+\left(\frac{x+349}{5}-4\right)=0\)

\(\Leftrightarrow\)\(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{324}+\frac{x+329}{5}=0\)

\(\Leftrightarrow\)\(\left(x+329\right)\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)=0\)

Vì \(\left(\frac{1}{327}+\frac{1}{326}+\frac{1}{325}+\frac{1}{324}+\frac{1}{5}\right)\ne0\)

\(\Rightarrow\)\(x+329=0\)

\(\Rightarrow\)\(x=-329\)

Vậy \(x=-329\)

21 tháng 8 2020

a) \(a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\ge0\\\left(c-a\right)^2\ge0\\\left(b-c\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(a-b\right)^2+\left(c-a\right)^2+\left(b-c\right)^2=0\)

\(\Leftrightarrow a=b=c\)

21 tháng 8 2020

a. \(a^2+b^2+c^2=ab+bc+ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ab-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\left(đpcm\right)\)