Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5)
để \(\frac{5x-3}{x+1}\)là số nguyên
\(5x-3⋮x+1\)
\(x+1⋮x+1\)
\(\Rightarrow5\left(x+1\right)⋮x+1\)
\(5x-3-\left(5x-5\right)⋮x+1\)
\(-2⋮x+1\)
\(\Rightarrow x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
x+1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy \(x\in\left\{0;-2;1;-3\right\}\)
1.
a, \(x-14=3x+18\)
\(\Rightarrow x-3x=18+14\)
\(\Rightarrow-2x=32\Rightarrow x=\frac{32}{-2}=-16\)
b, \(\left(x+7\right).\left(x-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+7=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-7\\x=9\end{cases}}}\)
c, \(\left|2x-5\right|-7=22\)
\(\Rightarrow\left|2x-5\right|=22+7\)
\(\Rightarrow\left|2x-5\right|=29\)
\(\Rightarrow\orbr{\begin{cases}2x+5=29\\2x-5=29\end{cases}}\Rightarrow\orbr{\begin{cases}2x=24\\2x=34\end{cases}\Rightarrow}\orbr{\begin{cases}x=12\\x=17\end{cases}}\)
d, \(\left(\left|2x\right|-5\right)-7=22\)
\(\Rightarrow\left(\left|2x\right|-5\right)=29\)
\(\Rightarrow\left|2x\right|=29+5\Rightarrow\left|2x\right|=34\Rightarrow x=\pm17\)
e, \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\)
Vì \(\left|x+3\right|\ge0;\left|x+9\right|\ge0;\left|x+5\right|\ge0;4x\ge0\)
Nên \(\left|x+3\right|+\left|x+9\right|+\left|x+5\right|=4x\ge0\)
\(\Rightarrow\left|x+3\right|>0\Rightarrow\left|x+3\right|=x+3\)
\(\left|x+9\right|>0\Rightarrow\left|x+9\right|=x+9\)
\(\left|x+5\right|>0\Rightarrow\left|x+5\right|=x+5\)
Ta có :
\(x+3+x+9+x+5=4x\)
\(\Rightarrow3x+\left(3+9+5\right)=4x\)
\(\Rightarrow4x-3x=17\)
\(\Rightarrow x=17\)
2. a , b sai đề bn
c, \(\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(\text{ }Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2/5 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
d, \(5xy-5x+y=5\)
\(\Rightarrow\left(5xy-5x\right)+y=5\)
\(\Rightarrow5x.\left(y-1\right)+y=5\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)=4\)
\(\Rightarrow\left(5x+1\right).\left(y-1\right)\inƯ\left(4\right)\)
\(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Ta có bảng sau :
5x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
y-1 | -4 | 4 | -2 | 2 | -1 | 1 |
x | 0 | -2 | 1/5 | -3/5 | 3/5 | -1 |
y | -3 | 5 | -1 | 3 | 0 | 2 |
a) \(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=1-x\\2x+1=x-1\end{cases}}\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b) \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c) \(\left|2x-3\right|-\left|3x+2\right|=0\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\5x=1\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d) \(\left|2+3\right|=\left|4x-3\right|\Leftrightarrow\left|4x-3\right|=5\)
\(\Rightarrow\orbr{\begin{cases}4x-3=5\\4x-3=-5\end{cases}}\Leftrightarrow\orbr{\begin{cases}4x=8\\4x=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
e) \(\left|\frac{5}{4}-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\Leftrightarrow\left|\frac{5}{8}x+\frac{3}{5}\right|=\frac{9}{4}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x+\frac{3}{5}=\frac{9}{4}\\\frac{5}{8}x+\frac{3}{5}=-\frac{9}{4}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{5}{8}x=\frac{33}{20}\\\frac{5}{8}x=-\frac{57}{20}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{66}{25}\\x=-\frac{114}{25}\end{cases}}\)
\(\left|2x+1\right|=\left|1-x\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=-x+1\\2x+1=x-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+x=-1+1\\2x-x=-1-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x=-2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
b. \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=6\\6x=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}\)
c. \(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3=3x+2\\2x-3=-3x-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-3x=3+2\\2x+3x=3-2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}-x=5\\5x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=\frac{1}{5}\end{cases}}\)
d, e tương tự
a) x.(x-1)=0
\(\Rightarrow\)x=0 hoặc x-1=0
\(\Rightarrow\)x=0+1
\(\Rightarrow\)x=1
vậy x=1 hoặc x=0
b) -x.(x+3)=0
\(\Rightarrow\)-x = 0 hoặc x+3 = 0
\(\Rightarrow\)x= 0-3
\(\Rightarrow\)x=-3
vậy x=0 hoặc x=-3
c) (2x-4).(x+2)=0
(2x-4)= 0
2x=0+4
2x=4
x=4:2
x=2
hoặc (x+2)=0
x= 0-2
x=-2
vậy x=2 hoặc x=-2
d) (3-x).|x+5|=0
3-x = 0
x= 3-0
x=3
hoặc |x+5|=0
x+ 5=0
x=0-5
x=-5
vậy x=3 hoặc x=-5
e) (|x|+1).( 4-2x) = 0
(|x|+1) =0
|x|= 0-1
|x|=-1
hoặc( 4-2x) = 0
2x=4-0
2x=4
x=4:2
x=2
g) x2+5x=0
x2=0
x=0
hoặc 5x=0
x= 0: 5
x=0
vậy x=0
2)
a) (x+3).(y-5)= 7
(x+3)và (y-5)\(\in\)Ư(7)=\(\left\{1;-1;7;-7\right\}\)
x+3 | 1 | 7 | -1 | -7 |
y-5 | 7 | 1 | -7 | -1 |
x | -2 | 4 | -4 | -10 |
y | 12 | 6 | 2 | 4 |
b) xy + 3x - 2y= 11
x( y+3) -2y=11
x(y-3)- 2( y+3) +6 = 11
( y+3) ( x-2) = 5
vì x,y thuộc Z \(\Leftrightarrow\)y+3 và x-2 \(\in\)Z
do đó y+3 và x-2 \(\in\)Ư ( 5)= \(\left\{1;5;-1;-5\right\}\)
y+3 | 1 | 5 | -1 | -5 |
x-2 | 5 | 1 | -5 | -1 |
y | -2 | 2 | -4 | -8 |
x | 7 | 3 | -3 | 1 |
\(\in\)\(\in\)
c) xy + 3x - 7y= 21
x( y+3) -7y= 21
x( y+3) - 7( y+3)+21= 21
(y+3)( x-7) =0
y+3 | 0 | |
x-7 | 0 | |
y | -3 | |
x | 7 |
a) |2x - 1| - 3 = 5
=> |2x - 1| = 8
Có 2 TH xảy ra:
TH1 : 2x - 1 = 8 => 2x = 9 => x = 9/2 (ko thỏa mãn x thuộc Z)
TH2 : -(2x - 1) = 8 => -2x + 1 = 8 => -2x = 9 => x = -9/2 (ko thỏa mãn x thuộc Z)
b) |3x - 5| = 4
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4 => 3x = 9 => x = 3
TH2 : -(3x - 5) = 4 => -3x + 5 = 4 => -3x = -1 => x = 1/3 (ko thỏa mãn x thuộc Z)
c) |5x - 1| = |-3 - 3x|
Có 2 TH xảy ra :
TH1 : 5x - 1 = -3 - 3x => 5x + 3x = -3 + 1 => 8x = -2 => x = -1/4 (ko thỏa mãn x thuộc Z)
TH2 : 5x - 1 = -(-3 - 3x) => 5x - 1 = 3 + 3x => 5x - 3x = 3 +1 => 2x = 4 => x = 2
d) |4x - 8| = |x + 1|
Có 2 TH xảy ra :
TH1 : 4x - 8 = x + 1 => 4x - x = 1 + 8 => 3x = 9 => x = 3
TH2 : 4x - 8 = -(x + 10) => 4x - 8 = -x - 10 => 4x + x = -10 + 8 => 5x = -2 => x = -2/5 (ko thỏa mãn x thuộc Z)
e) |3x - 5| - |4x + 9| = 0
=> |3x - 5| = |4x + 9|
Có 2 TH xảy ra :
TH1 : 3x - 5 = 4x + 9 => 3x - 4x = 9 + 5 => -x = 14 => x = -14
TH2 : 3x - 5 = -(4x + 9) => 3x - 5 = -4x - 9 => 3x + 4x = -9 + 5 => 7x = -4 => x = -4/7 (ko thỏa mãn x thuộc Z)
e)
A = \(\frac{x+5}{x-2}\) = \(\frac{\left(x-2\right)+7}{x-2}=1+\frac{7}{x-2}\)
Muốn A nguyên thì:
=> \(\frac{7}{x-2}\) ∈ Z
=> 7 ⋮ x - 2
=> x - 2 ∈ Ư (7)
=> x - 2 ∈ { 1; 7; -1; -7 }
=> x ∈ { 3; 9; -5; 1 }
a) (5x - 1)(2x - 1/3) = 0
\(\Rightarrow5x-1=0\) hoặc \(2x-\frac{1}{3}=0\)
\(\Rightarrow\left[{}\begin{matrix}5x=0+1\\2x=0+\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1:5=\frac{1}{5}\\x=\frac{1}{3}:2=\frac{1}{3}.\frac{1}{2}=\frac{1}{6}\end{matrix}\right.\)
Vậy x = 1/5 hoặc x = 1/6