Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)
a) \(\left|2-\frac{3}{2}x\right|-4=x+2\)
=> \(\left|2-\frac{3}{2}x\right|=x+2+4\)
=> \(\left|2-\frac{3}{2}x\right|=x+6\)
ĐKXĐ : \(x+6\ge0\) => \(x\ge-6\)
Ta có: \(\left|2-\frac{3}{2}x\right|=x+6\)
=> \(\orbr{\begin{cases}2-\frac{3}{2}x=x+6\\2-\frac{3}{2}x=-x-6\end{cases}}\)
=> \(\orbr{\begin{cases}2-6=x+\frac{3}{2}x\\2+6=-x+\frac{3}{2}x\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{2}x=-4\\\frac{1}{2}x=8\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{8}{5}\\x=16\end{cases}}\) (tm)
b) \(\left(4x-1\right)^{30}=\left(4x-1\right)^{20}\)
=> \(\left(4x-1\right)^{30}-\left(4x-1\right)^{20}=0\)
=> \(\left(4x-1\right)^{20}.\left[\left(4x-1\right)^{10}-1\right]=0\)
=> \(\orbr{\begin{cases}\left(4x-1\right)^{20}=0\\\left(4x-1\right)^{10}-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}4x-1=0\\\left(4x-1\right)^{10}=1\end{cases}}\)
=> \(\orbr{\begin{cases}4x=1\\4x-1=\pm1\end{cases}}\)
=> x = 1/4
hoặc x = 0 hoặc x = 1/2
h) \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x+5^x.5^2=650\)
\(\Leftrightarrow5^x\left(1+25\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow x=2\)
haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=
bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây
a.
\(\left(\frac{1}{3}\right)^2\times27=3^x\)
\(\frac{1^2}{3^2}\times3^3=3^x\)
\(3^1=3^x\)
\(x=1\)
b.
\(\frac{64}{\left(-2\right)^x}=-32\)
\(\frac{\left(-2\right)^6}{\left(-2\right)^x}=\left(-2\right)^5\)
\(\left(-2\right)^x=\frac{\left(-2\right)^6}{\left(-2\right)^5}\)
\(\left(-2\right)^x=-2\)
\(x=1\)
c.
\(3x^2-\frac{1}{2}x=0\)
\(x\times\left(3x-\frac{1}{2}\right)=0\)
TH1:
\(x=0\)
TH2:
\(3x-\frac{1}{2}=0\)
\(3x=\frac{1}{2}\)
\(x=\frac{1}{2}\div3\)
\(x=\frac{1}{2}\times\frac{1}{3}\)
\(x=\frac{1}{6}\)
Vậy x = 0 hoặc x = 1/6
a/ \(\left(\frac{1}{5}\right)^x=\left(\frac{1}{5^3}\right)^3=\left(\frac{1}{5}\right)^9\Rightarrow x=9\)
b/ \(\left(\frac{3}{5}\right)^x=\left(\frac{3^2}{5^2}\right)^3=\left(\frac{3}{5}\right)^6\Rightarrow x=6\)
c\(2^{3-2x}=\left(2^3\right)^3=2^9\Rightarrow3-2x=9\Rightarrow x=-3\)
d/ \(2^{3x+1}=32^2=\left(2^5\right)^2=2^{10}\Rightarrow3x+1=10\Rightarrow x=3\)
e/ \(3^{6-3x}=81^3=\left(3^4\right)^3=3^{12}\Rightarrow6-3x=12\Rightarrow x=-2\)
\(\left(\frac{1}{5}\right)^x=\left(\frac{1}{125}\right)^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left[\left(\frac{1}{5}\right)^3\right]^3\Leftrightarrow\left(\frac{1}{5}\right)^x=\left(\frac{1}{5}\right)^9\Leftrightarrow x=9\)
\(\left(\frac{3}{5}\right)^x=\left(\frac{9}{25}\right)^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left[\left(\frac{3}{5}\right)^2\right]^3\Leftrightarrow\left(\frac{3}{5}\right)^x=\left(\frac{3}{5}\right)^6\Leftrightarrow x=6\)
\(2^{3-2x}=8^3\Leftrightarrow2^{3-2x}=\left(2^3\right)^3\Leftrightarrow2^{3-2x}=2^9\Leftrightarrow3-2x=9\)
\(\Leftrightarrow2x=3-9\Leftrightarrow2x=-6\Leftrightarrow x=\left(-6\right):2\Leftrightarrow x=-3\)
Các phép còn lại làm tương tự bn nha !
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Đặt bt trên là A nha
Đổi |x-1|=|1-x|
Suy ra A=|1-x|+x-2|+|x-3|
Áp dụng BĐTGTTĐ ta có
A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra
Vậy x =2
b,
\(\left|3x+\frac{1}{2}\right|\ge0\)
\(\left|3x+\frac{1}{6}\right|\ge0\)
..........
\(\left|3x+380\right|\ge0\)
Suy ra đề bài \(\ge\)0
suy ra 58x \(\ge\)0
Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)
Tự tính nhé hok tốt
a) \(5^{3x+1}=25^{x+2}\)
\(\Leftrightarrow5^{3x+1}=\left(5^2\right)^{x+2}\)
\(\Leftrightarrow5^{3x+1}=5^{2x+4}\)
\(\Leftrightarrow3x+1=2x+4\)
\(\Leftrightarrow3x-2x=4-1\)
\(\Leftrightarrow x=3\)
a)\(16^x=32^8\)
\(\Rightarrow\left(2^4\right)^x=\left(2^5\right)^8\)
\(\Rightarrow2^{4x}=2^{40}\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=10\)
b)\(4^x=32^{40}\)
\(\Rightarrow\left(2^2\right)^x=\left(2^5\right)^{40}\)
\(\Rightarrow2^{2x}=2^{200}\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
c)\(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{4}{9}\right)^4\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left[\left(\dfrac{2}{3}\right)^2\right]^4\)
\(\Rightarrow\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^8\)
\(\Rightarrow x=8\)
d)\(2^{3x+1}=32^2\)
\(\Rightarrow2^{3x+1}=\left(2^5\right)^2=2^{10}\)
\(\Rightarrow3x+1=10\)
\(\Rightarrow3x=9\)
\(\Rightarrow x=3\)
e)\(\left(2x-1\right)^3:7=49\)
\(\Rightarrow\left(2x-1\right)^3=343\)
\(\Rightarrow\left(2x-1\right)^3=7^3\)
\(\Rightarrow2x-1=7\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
a) Ta có: \(16^x=32^8\)
=> \(\left(2^4\right)^x=\left(2^5\right)^8\)
=> \(2^{4.x}=2^{5.8}\)
=> 4x = 40
=> x = 10
Vậy x =10
b) Ta có : \(4^x=32^{40}\)
=> \(\left(2^2\right)^x=\left(2^5\right)^{40}\)
=> \(2^{2x}=2^{5.40}\)
=> 2x = 200
=> x =100
Vậy x = 100
c) Ta có : \(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{4}{9}\right)^4\)
=> \(\left(\dfrac{2}{3}\right)^x=\left(\dfrac{2}{3}\right)^{2.4}\)
=> x = 8
Vậy x =8
d) Ta có : \(2^{3x+1}=32^2\)
=> \(2^{3x+1}=\left(2^5\right)^2\)
=> 3x+1 =5.2
=> 3x+1 = 10
=> 3x = 10-1=9
=> x= \(\dfrac{9}{3}\)=3
Vậy x = 3
e) (2x-1)\(^3\) : 7 = 49
(2x-1)\(^3\) = 49.7
(2x-1)\(^3\) = 343
(2x-1)\(^3\) = \(7^3\)
=> 2x-1 = 7
2x = 8
x = 8:2
x = 4
Vậy x = 4
a) 23x + 1 = 32x
23x - 32x = -1
-9x = -1
x=-1/-9
x=1/9
b) 3x+2 = 273x-1
3x - 273x = -1 - 2
-270x = -3
x = -3/-270
x=3/270