Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dài quá bạn ơi , mình khuyên bạn nên đăng từng câu một thì họ sẽ gải cho nhé
Bạn nên đăng từng câu hỏi thì mọi người sẽ dễ giải hơn , chứ bạn đăng một loạt như thế này thì không ai giải đâu bạn ak
a.\(\frac{1}{2}-\left(x-\frac{1}{3}\right)=\frac{1}{6}\)
\(x-\frac{1}{3}=\frac{1}{2}-\frac{1}{6}\)
\(x-\frac{1}{3}=\frac{1}{3}\)
\(x=\frac{2}{3}\)
\(a.\frac{1}{2}-\left(x-\frac{1}{3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{2}-x+\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{6}-x=\frac{1}{6}\)
\(\Leftrightarrow\frac{5}{6}-\frac{1}{6}=x\)
\(\Leftrightarrow x=\frac{2}{3}\)
\(b.||3x+2|-2x-5|=3x-\left(-1\right)^{2015}\)
\(\Leftrightarrow||3x+2|-2x-5|=3x+1\)
\(\Leftrightarrow\orbr{\begin{cases}|3x+2|-2x-5=3x+1\\|3x+2|-2x-5=-3x-1\end{cases}\Leftrightarrow\orbr{\begin{cases}|3x+2|=5x+6\left(n\right)\\|3x+2|=-\left(x-4\right)\left(l\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x+2=5x+6\\3x+2=-5x-6\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x=4\\8x=-8\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
V...\(x=-1;x=-2\)
\(3x\left(x-1\right)+5\left(2-x\right)=3x^2-7x+6\) \(6\)
<=> \(3x^2-3x+10-5x=3x^2-7x+6\)
<=> \(-x=-4\)
<=> \(x=4\)
\(\left(x+2\right)^2=\frac{1}{2}-\frac{1}{3}\)
<=> \(\left(x+2\right)^2=\frac{1}{6}\)
<=> \(\hept{\begin{cases}x+2=\sqrt{\frac{1}{6}}\\x+2=-\sqrt{\frac{1}{6}}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\sqrt{\frac{1}{6}}-2\\x=-\sqrt{\frac{1}{6}}-2\end{cases}}\)
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
\(\left(4x+3\right)^2=\frac{2}{3}:6\)
\(\left(4x+3\right)^2=\frac{1}{9}\)
\(\left(4x+3\right)^2=\left(\frac{1}{3}\right)^2\)
\(\Rightarrow4x+3=\frac{1}{3}\)
\(4x=-\frac{8}{3}\)
\(x=-\frac{2}{3}\)
\(a,\frac{3x+2}{5x+7}=\frac{3x-1}{5x-1}=\frac{\left(3x+2\right)-\left(3x-1\right)}{\left(5x+7\right)-\left(5x-1\right)}=\frac{3}{8};\frac{3x+2}{5x+7}=\frac{3}{8}\Leftrightarrow24x+16=15x+21\Leftrightarrow9x=5\Leftrightarrow x=\frac{5}{9}\) \(b,\frac{37-x}{x+13}=\frac{3}{7}\Leftrightarrow37.7-7x=3x+39\Leftrightarrow259-7x=3x+39\Leftrightarrow220-7x=3x\Leftrightarrow10x=220\Leftrightarrow x=22\) \(c,\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}=\frac{x+4}{2x+6}=\frac{\left(x+4\right)-\left(x+1\right)}{2x+6-\left(2x+1\right)}=\frac{3}{5};\frac{x+1}{2x+1}=\frac{3}{5}\Leftrightarrow5x+5=6x+3\Leftrightarrow x=2\) \(d,\frac{x-2}{x+2}=\frac{x+3}{x-4}=\frac{\left(x+3\right)-\left(x-2\right)}{\left(x-4\right)-\left(x+2\right)}=\frac{5}{-6};\frac{x-2}{x+2}=\frac{5}{-6}\Leftrightarrow6\left(2-x\right)=5x+10\Leftrightarrow2-6x=5x\Leftrightarrow x=\frac{2}{11}\) \(f,\frac{3x-5}{x}=\frac{9x}{3x+2}=\frac{9x-15}{3x}=\frac{9x-\left(9x-15\right)}{\left(3x+2\right)-3x}=\frac{15}{2};\frac{9x}{3x+2}=\frac{15}{2}\Leftrightarrow18x=45x+30\Leftrightarrow27x+30=0\Leftrightarrow x=\frac{-10}{9}\) \(e,\frac{x+2}{6}=\frac{5x-1}{5}\Leftrightarrow5\left(x+2\right)=6\left(5x-1\right)\Leftrightarrow5x+10=30x-6\Leftrightarrow10=25x-6\Leftrightarrow25x=16\Leftrightarrow x=\frac{16}{25}\)
Đặt bt trên là A nha
Đổi |x-1|=|1-x|
Suy ra A=|1-x|+x-2|+|x-3|
Áp dụng BĐTGTTĐ ta có
A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra
Vậy x =2
b,
\(\left|3x+\frac{1}{2}\right|\ge0\)
\(\left|3x+\frac{1}{6}\right|\ge0\)
..........
\(\left|3x+380\right|\ge0\)
Suy ra đề bài \(\ge\)0
suy ra 58x \(\ge\)0
Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)
Tự tính nhé hok tốt