Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ai giúp với huhu phần thưởng là 1 cái acc Bang bang cho ai trả lời đúng nếu người đó cần
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
a: (x-2)(x+2)-(x+1)2=1
=>\(x^2-4-\left(x^2+2x+1\right)=1\)
=>\(x^2-4-x^2-2x-1=1\)
=>-2x-5=1
=>-2x=6
=>\(x=\dfrac{6}{-2}=-3\)
b: Sửa đề:\(x^3-8-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x^3-8\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-4\right)=0\)
=>\(\left(x-2\right)\left(x^2+2x+4-x+4\right)=0\)
=>\(\left(x-2\right)\left(x^2+x\right)=0\)
=>x(x+1)(x-2)=0
=>\(\left[{}\begin{matrix}x=0\\x+1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=2\end{matrix}\right.\)
c: 3x(x-1)+1-x=0
=>3x(x-1)-(x-1)=0
=>(x-1)(3x-1)=0
=>\(\left[{}\begin{matrix}x-1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
Đặt \(t=\left(x+\frac{1}{x}\right)^2\)\(\Rightarrow\)\(x^2+\frac{1}{x^2}=t-2\)điều kiện t>=0,x # 0
Phương trình trở thành
8t +4(t-2)2 - 4(t-2)2t =(x+4)2
8t + 4t2 - 16t + 16 -4t3 + 16t2 - 16t=(x+4)2
-4t3 + 20t2 -24t=x2 +8x
-4t(t2 -5t +6)=x(x+8)
-4t(t-2)(t-3)=x(x+8)
Mình chỉ giúp dược tới đó
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)
ĐKXĐ : \(x\ne0\)
Ta có \(pt\Leftrightarrow8\left(x^2+\frac{1}{x^2}+2\right)+4\left(x^2+\frac{1}{x}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x^2+\frac{1}{x^2}+2\right)=\left(x+4\right)^2\)
Đặt \(x^2+\frac{1}{x^2}=a\) thay vào pt trên ta có :
\(pt\Leftrightarrow8\left(a+2\right)+4a^2-4.a.\left(a+2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8a+16+4a^2-4a^2-8a=\left(x+4\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2=16\Leftrightarrow\orbr{\begin{cases}x+4=4\\x+4=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(KTMĐKXĐ\right)\\x=-8\left(TMĐKXĐ\right)\end{cases}}}\)
Vậy \(x=-8\)
\(\)
\(8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)^2-4\left(x^2+\frac{1}{x^2}\right)\left(x+\frac{1}{x}\right)^2=\left(x+4\right)^2\)ĐKXĐ: \(x\ne0\)
Ta có:
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right)\left[\left(x^2+\frac{1}{x^2}\right)-\left(x+\frac{1}{x}\right)^2\right]=\left(x+4\right)^2\)
\(\Leftrightarrow8\left(x+\frac{1}{x}\right)^2+4\left(x^2+\frac{1}{x^2}\right).\left(-2\right)=\left(x+4\right)^2\)
\(\Leftrightarrow8\left[\left(x+\frac{1}{x}\right)^2-\left(x^2+\frac{1}{x^2}\right)\right]=\left(x+4\right)^2\)
\(\Leftrightarrow\left(x+4\right)^2=16\Leftrightarrow x\left(x+8\right)=0\Rightarrow\left[{}\begin{matrix}x=0\left(KTM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)