Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a: ĐKXD: x<>0
\(\dfrac{14x^3+12x^2-14x}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(\dfrac{2x\left(7x^2+6x-7\right)}{2x}=\left(x+2\right)\left(3x-4\right)\)
=>\(7x^2+6x-7=3x^2-4x+6x-8\)
=>\(7x^2+6x-7=3x^2+2x-8\)
=>\(4x^2+4x+1=0\)
=>\(\left(2x+1\right)^2=0\)
=>2x+1=0
=>x=-1/2(nhận)
b: \(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
=>\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
=>\(24x^2-26x-5-24x^2+23x+12=15\)
=>-3x+7=15
=>-3x=8
=>\(x=-\dfrac{8}{3}\)
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
a. \(2.\left(5x-8\right)-3.\left(4x-5\right)=4.\left(3x-4\right)+11\Leftrightarrow10x-16-12x+15=12x-16+11\\ \)
\(\Leftrightarrow-2x-1=12x-5\Leftrightarrow14x-4=0\Leftrightarrow x=\frac{2}{7}\)
\(a,2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow10x-12x-12x=-16+11+16-15\)
\(\Leftrightarrow-14x=-4\)
\(\Leftrightarrow x=\frac{-4}{-14}=\frac{2}{7}\)
a)
3x(8x-4)-6x(4x-3)=30
=> 6x(4x-2)-6x(4x-3)=30
=> 6x(4x-2-4x+3)=30
=> 6x=30
=> x=5
b)
3x(5-2x)+2x(3x-5)=20
\(15x-6x^2+6x^2-10x=20\)
\(5x=20\)
\(x=4\)
Bài 1.
a)
\((x-2)(2x-1)-(2x-3)(x-1)-2\\=2x^2-x-4x+2-(2x^2-2x-3x+3)-2\\=2x^2-5x+2-(2x^2-5x+3)-2\\=2x^2-5x+2-2x^2+5x-3-2\\=(2x^2-2x^2)+(-5x+5x)+(2-3-2)\\=-3\)
b)
\(x(x+3y+1)-2y(x-1)-(y+x+1)x\\=x^2+3xy+x-2xy+2y-xy-x^2-x\\=(x^2-x^2)+(3xy-2xy-xy)+(x-x)+2y\\=2y\)
Bài 2.
a)
\((14x^3+12x^2-14x):2x=(x+2)(3x-4)\\\Leftrightarrow 14x^3:2x+12x^2:2x-14x:2x=3x^2-4x+6x-8\\ \Leftrightarrow 7x^2+6x-7=3x^2+2x-8\\\Leftrightarrow (7x^2-3x^2)+(6x-2x)+(-7+8)=0\\\Leftrightarrow 4x^2+4x+1=0\\\Leftrightarrow (2x)^2+2\cdot 2x\cdot 1+1^2=0\\\Leftrightarrow (2x+1)^2=0\\\Leftrightarrow 2x+1=0\\\Leftrightarrow 2x=-1\\\Leftrightarrow x=\frac{-1}2\)
b)
\((4x-5)(6x+1)-(8x+3)(3x-4)=15\\\Leftrightarrow 24x^2+4x-30x-5-(24x^2-32x+9x-12)=15\\\Leftrightarrow 24x^2-26x-5-(24x^2-23x-12)=15\\\Leftrightarrow 24x^2-26x-5-24x^2+23x+12=15\\\Leftrightarrow -3x+7=15\\\Leftrightarrow -3x=8\\\Leftrightarrow x=\frac{-8}3\\Toru\)
a: ta có: \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow8x-24x^2+2-6x+24x^2-60x-4x+40=-50\)
\(\Leftrightarrow-62x=-92\)
hay \(x=\dfrac{46}{31}\)
b: ta có: \(\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4\left(3x^2+9x+2x+6\right)=38\)
\(\Leftrightarrow-4x^2+5x-1+12x^2+44x+24-38=0\)
\(\Leftrightarrow8x^2+49x-15=0\)
\(\text{Δ}=49^2-4\cdot8\cdot\left(-15\right)=2881\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-49-\sqrt{2881}}{16}\\x_2=\dfrac{-49+\sqrt{2881}}{16}\end{matrix}\right.\)
a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)
\(\Leftrightarrow x^2+x+3x+3-x^2+5x=11\)
\(\Leftrightarrow9x+3=11\)
\(\Leftrightarrow9x=11-3\)
\(\Leftrightarrow9x=8\)
\(\Leftrightarrow x=\dfrac{8}{9}\)
b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(\Leftrightarrow\left(8x-24x^2+2-6x\right)+\left(24x^2-60x-4x+10\right)=-50\)
\(\Leftrightarrow2x-24x^2+2+24x^2-64x+10=-50\)
\(\Leftrightarrow-62x+12=-50\)
\(\Leftrightarrow-62x=-50-12\)
\(\Leftrightarrow-62x=-62\)
\(\Leftrightarrow x=\dfrac{-62}{-62}\)
\(\Leftrightarrow x=1\)
a) \(\left(x+3\right)\left(x+1\right)-x\left(x-5\right)=11\)
\(x^2+x+3x+3-x^2+5x=11\)
\(x+8x+3=11\)
\(x+8x=8\)
\(x\left(8+1\right)=8\)
\(x=\dfrac{8}{9}\)
b) \(\left(8x+2\right)\left(1-3x\right)+\left(6x-1\right)\left(4x-10\right)=-50\)
\(8x-24x^2+2-6x+24x^2-60x-4x+10=-50\)
\(-62x+12=-50\)
\(-62x=-62\)
\(x=1\)
a) Thực hiện rút gọn VT = -2x – 64
Giải phương trình -2x – 64 = 0 thu được x = -32.
b) Thực hiện rút gọn VT = -62 x +12
Giải phương trình -62x + 12 = -50 thu được x = 1.
\(\left(4x-5\right)\left(6x+1\right)-\left(8x+3\right)\left(3x-4\right)=15\)
\(24x^2+4x-30x-5-\left(24x^2-32x+9x-12\right)=15\)
\(24x^2+4x-30x-5-24x^2+32x-9x+12=15\)
\(-3x=8\)
\(x=-\frac{8}{3}\)
=.= hok tốt!!
Bạn chỉ áp dụng phương pháp nhân đa thức với đa thức sau
rút gọn các hạng tử đồng dạng cho nhau thì nó sẽ trở về
dạng tìm x như bình thường