Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thấy \(x=0\) không phải là nghiệm của pt : Chia hai vế cho \(x^2\) ta được :
\(\Leftrightarrow x^2+3x+4+\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}\right)+3\left(x+\dfrac{1}{x}\right)+4=0\)
\(Đặt\) : \(x+\dfrac{1}{x}\) \(=t\) , thay vào pt ta được :
\(\Leftrightarrow t^2-2+3t+4=0\)
\(\Leftrightarrow\left(t+1\right)\left(t+2\right)=0\)
\(TH1:\) \(\Leftrightarrow x+\dfrac{1}{x}+1=0\)
\(\dfrac{x^2+1+x}{x}=0\)
hình như sai thì phải á bạn
\(TH2:\) \(x+\dfrac{1}{x}+2=0\)
\(x^2+2x+1=0\)
\(\Rightarrow x=-1\)
\(Vậy...\)
mong các anh chị lớp trên xem hộ em bài này với ạ chứ em cũng mới chỉ có lớp 8 thôi ạ
\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)=\left(x-2\right)\left(x+2\right)\)
\(\Rightarrow8x+16-5x^2-10x+4x^2+4x-8x-8=x^2-4\)
\(\Rightarrow-6x-x^2-8-x^2+4=0\)
\(\Rightarrow-6x-2x^2-4=0\)
\(\Rightarrow-2\left(3x+x^2+2\right)=0\)
\(\Rightarrow\left(x+1,5\right)^2-0,25=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=-1\end{cases}}}\)
4a) \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\left(a-b\right)^2+4ab=a^2-2ab+b^2+4ab=a^2+b^2+2ab\)
=> (a+b)^2=(a-b)^2+4ab
- 2x – x2 + 2 – x – (3x2 + 6x + 5x +10) = – 4x2 + 2
- 2x – x2 + 2 – x – 3x2 – 6x – 5x – 10 = – 4x2 + 2 –10x = 10 x = – 1
- 2x2 – 6x + x – 3 = 0
(x – 3)(2x + 1) = 0
x = 3 hay x = -1/2
Ta thấy : \(4x^2+4x+1\)
\(=\left(2x+1\right)^2\)
Để P = \(\frac{4x^3+8x^2-x-2}{4x^2+4x+1}=\frac{4x^2\left(x+2\right)-\left(x+2\right)}{\left(x+2\right)^2}=\frac{\left(x+2\right)\left(4x^2-1\right)}{\left(x+2\right)^2}\)
\(=\frac{\left(2x-1\right)\left(2x+1\right)}{x+2}\)Xác định thì :
\(x+2\ne0\Rightarrow x\ne-2\)
(2x - 1)^2 + (x + 3)^2 - 5(x + 7)(x - 7) = 0
<=>4x^2-4x+1+x^2+6x+9-5x^2+245=0
<=>2x+255=0
<=>2x=-255
<=>x=-255/2
Có trên google ( ghi nguồn đầy đủ )
x=0
Đúng đó
ta có 2 trường hợp: +, x = 0 ; +, x = 1