K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
22 tháng 6 2021

Câu 2: 

\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)

Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)

do đó phương trình ban đầu tương đương với: 

\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)

\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)

\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)

18 tháng 10 2020

a) ( x2 - 1 )( x - 101 ) + 101x( x + 1 ) = 101

<=> x3 - 101x2 - x + 101 + 101x2 + 101x - 101 = 0

<=> x3 + 100x = 0

<=> x( x2 + 100 ) = 0

<=> \(\orbr{\begin{cases}x=0\\x^2+100=0\end{cases}}\Leftrightarrow x=0\)( vì x2 + 100 ≥ 100 > 0 ∀ x )

b) x4 - 3x2( 2x - 3 ) = 0

<=> x4 - 6x3 + 9x2 = 0

<=> x2( x2 - 6x + 9 ) = 0

<=> x2( x - 3 )2 = 0

<=> \(\orbr{\begin{cases}x^2=0\\\left(x-3\right)^2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

18 tháng 10 2020

a,\(\left(x^2-1\right)\left(x-101\right)+101x\left(x+1\right)=101\)

\(\Leftrightarrow x^3-101x^2-x+101+101x^2+101x=101\)

\(\Leftrightarrow x^3+100x=101-101\)

\(\Leftrightarrow x^3+101x=0\)

\(\Leftrightarrow x\left(x^2+101\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x^2+101\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x^2=-101\end{cases}\Rightarrow}x=0}\)

15 tháng 10 2023

1, a) 

Ta có:

\(x^2+2x+1=\left(x+1\right)^2\)

Thay x=99 vào ta có:

\(\left(99+1\right)^2=100^2=10000\)

b) Ta có:

\(x^3-3x^2+3x-1=\left(x-1\right)^3\)

Thay x=101 vào ta có:

\(\left(101-1\right)^3=100^3=1000000\)

25 tháng 7 2019

a) \(A=x^2-20x+101=x^2-2.10x+100+1\)

\(=\left(x-10\right)^2+1\ge1\)

Vậy \(A_{min}=1\Leftrightarrow x=10\)

25 tháng 7 2019

b) \(B=x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(B_{min}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)

13 tháng 7 2016

1. a) 1012 = (100 + 1)2 = 1002 + 2.100 + 1 = 10201

b) 10012 = (1000 +1)2 = 10002 + 2.1000 + 1 = 1002001

2. a) (x + 2)2 - 9 = 0

<=> (x + 2)2      = 9

<=> x + 2 = 3 hoặc x + 2 = -3

*x + 2 = 3 => x = 1

*x + 2 = -3 => x = -5

Vậy x = 1; x = -5

b) x2 - 2x + 1 = 25

<=>   (x - 1)2  = 25

<=> x - 1 = 5 hoặc x - 1 = -5

*x - 1 = 5 => x = 6

*x - 1 = -5 => x = -4

Vậy x = 6; x = -4

**Tái bút : em mới học lớp 6 lên lớp 7 chị nhé!**

14 tháng 7 2016

tìm X bé sai r bé ơi ^^

13 tháng 1 2023

`1/2:(1+1/2):(1+1/3):...:(1+1/x)=1/101`

`<=>1/2:3/2:4/3:...:[x+1]/x=1/101`

`<=>1/2 . 2/3 . 3/4 . .... . x/[x+1]=1/101`

`<=>1/[x+1]=1/101`

`<=>x+1=101`

`<=>x=100`

10 tháng 10 2017

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)

\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{99}{101}\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{99}{202}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{101}\)

\(\Leftrightarrow x=100\)

30 tháng 8 2020

\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(Vì a+b+c=0)

b)\(a+b+c=0\Leftrightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(ab+bc+ca\right)^2\)

Theo câu a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\) nên ta suy ra được điều cần phải chứng minh là \(a^4+b^4+c^4=2\left(ab+bc+ca\right)^2\)

2.

a) \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(\Leftrightarrow A=1\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(A=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

Sử dụng hằng đẳng thức \(\left(a-b\right)\left(a+b\right)=a^2-b^2\)ta được 

\(A=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(...\)

\(A=2^{32}-1\left(ĐPCM\right)\)

b) Ta có

\(\left(100^2-101^2\right)+\left(103^2-98^2\right)+\left(105^2-96^2\right)+\left(94^2-107^2\right)\)

=\(201\left(-1+5+9-13\right)=0\)

Suy ra ĐPCM

3

a) Phân tích hết ra rồi chuyển vế làm như bài toán tìm x thông thường
b) Sử dụng bất đẳng thức a^2-b^2= (a-b)(a+b)

c) Sử dụng bất đẳng thức (a-b)(a+b)=a^2-b^2 do ta dễ thấy các biểu thức liên hợp 

30 tháng 8 2020

Không hiểu chỗ nào thì có thể nhắn tin sang để mk giải thích

10 tháng 11 2021

\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)