Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
a, ( x + 1 ) = 0
<=> x = -1
b, x3 - 9x2 + 27x - 27 = 0
<=> ( x - 3 )3 = 0
<=> x - 3 = 0
<=> x = 3
9x2-6x-3=0
=>9x2-9x+3x-3=0
=>(x-1)(9x-3)=0
=>x-1=0 hoặc 9x+3 = 0
=> x=1 hoặc x=-1/3
b. x3+9x2+27x+19=0
x3+x2+8x2+8x+19x+19=0
(x+1)(x2+8x+19)=0
x+1=0 => x=-1
x2+8x+19= x2+8x+16+3=(x+4)2+3 lớn hơn hoặc bằng 3., lớn hơn 0 với moị x
a, \(\Rightarrow3\left(3x^2-2x-1\right)=0\)
\(\Rightarrow3x^2-2x-1=0\)
\(\Rightarrow x\left(3x-2\right)=1\)
\(\Rightarrow\orbr{\begin{cases}x=1\\3x-2=1\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=1\end{cases}}}\)
\(\Rightarrow\orbr{\begin{cases}x=-1\\3x-2=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-1\\x=\frac{1}{3}\end{cases}}\)
b,\(\Rightarrow x^3+3x^2+6x^2+9x+18x+19=0\)
\(\Rightarrow x^2\left(x+3\right)+3x\left(x+3\right)+18\left(x+3\right)-2=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+18\right)=2\)
Mk k co thoi gian. buoc tiep theo tu lam not nhe
\(a,9x^2-6x-3=0\)
\(\Leftrightarrow9x^2-6x+1-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2=4\)
\(\Rightarrow3x-1=\pm2\)
\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)
\(b,x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)
\(\Leftrightarrow\left(x+3\right)^3=8\)
\(\Rightarrow x+3=2\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=\frac{-11}{25}\)
Vậy \(x=\frac{-11}{25}\)
\(9x^2-6x-3=0\)
<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)
<=> \(\left(3x-1\right)^2-2^2=0\)
<=> \(\left(3x-3\right)\left(3x+1\right)=0\)
<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(x^3+9x^2+27x+19\) \(=0\)
<=>\(x^3+x^2+8x^2+8x+19x+19=0\)
<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)
mà \(x^2+8x+19>0\)
=> \(x+1=0\)
<=> \(x=-1\)
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)
<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)
<=> \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)
<=> \(x^3-25x-x^3+2x^2+4x-8=3\)
<=> \(2x^2-21x-8=3\)
<=> \(2x^2-21x-11=0\)
<=> \(2x^2-22x+x-11=0\)
<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)
<=> \(\left(2x+1\right)\left(x-11\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)
a ) \(x^3-6x^2+12x-8=0\)
\(\Leftrightarrow x^3-3.x^2.2+3.x.2^2-2^3=0\)
\(\Leftrightarrow\left(x-2\right)^3=0\)
\(\Leftrightarrow\left(x-2\right)=0\)
\(\Leftrightarrow x=2\)
b ) \(x^3+9x^2+27x+27=0\)
\(\Leftrightarrow x^3+3.x^2.3+3.x.3^2+3^3=0\)
\(\Leftrightarrow\left(x-3\right)^3=0\)
\(\Leftrightarrow\left(x-3\right)=0\)
\(\Leftrightarrow x=3\)
a) x3 - 6x2 + 12x - 8 = 0
( x - 2 ) 3 = 0
x - 2 = 0
x = 2
b) x3 + 9x2 + 27x + 27 = 0
( x + 3 )3 = 0
x + 3 = 0
x = -3
a) x3-9x2+27x-27=0
<=>(x-3)3=0
<=>x-3=0
<=>x=3
b) x3-25x=0
<=>x.(x2-25)=0
<=>x.(x-5)(x+5)=0
<=>x=0 hoặc x-5=0 hoặc x+5=0
<=>x=0 hoặc x=5 hoặc x=-5
c)9x2-1=0
<=>(3x-1)(3x+1)=0
<=>3x-1=0 hoặc 3x+1=0
<=>x=1/3 hoặc x=-1/3
a, x^3 - 9x^2 + 27x - 27 = 0
=> ( x - 3)^3 = 0
=> x - 3 = 0
=> x = 3
b, x^3 - 25x = 0
=> x(x^2 - 25) = 0
=> x(x-5)(x + 5) = 0
=> x =0 hoặc x - 5 = 0 hoặc x + 5 = 0
=> x= 0 hoặc x =5 hoặc x = -5
c, 9x^2 - 1 = 0
=> (3x)^2 - 1^2 = 0
=> ( 3x- 1)(3x+ 1) = 0
=> 3x - 1 = 0 hoặc 3x + 1 = 0
=> x = 1/3 hoặc x = -1/3
a, \(4x^2-4x=-1\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)
b, \(27x^3+27x^2+9x+1=0\Leftrightarrow27x^3+1+27x^2+9x=0\)
\(\Leftrightarrow\left(3x+1\right)\left(9x^2-3x+1\right)+9x\left(3x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(9x^2+2>0\right)=0\Leftrightarrow x=-\frac{1}{3}\)
c, \(9x^2\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(9x^2-4\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=0\Leftrightarrow x=-\frac{2}{3};x=\frac{2}{3};x=-1\)
d, \(\left(x+1\right)^3-25\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)^2-25\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-4\right)\left(x+6\right)=0\Leftrightarrow x=-1;x=-6;x=4\)
a) \(x^3+9x^2+27x+19=0\)
\(\Rightarrow x^3+x^2+8x^2+8x+19x+19=0\)
\(\Rightarrow x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x^2+8x+19=0\end{matrix}\right.\)
Mà \(x^2+8x+19=x^2+2.x.4+16+3=\left(x+4\right)^2+3\)
Vì \(\left(x+4\right)^2\ge0\) với mọi x
\(3>0\)
\(\Rightarrow\left(x+4\right)^2+3>0\) với mọi x
=> ( x + 4 )2 + 3 vô nghiệm
=> x + 1 = 0
=> x = -1
Vậy x = -1
b) \(\left(2x+1\right)^3+x\left(x-2\right)\left(x+2\right)-9x\left(x-2\right)^2+57=0\)
\(\Rightarrow\left(2x\right)^3+3.\left(2x\right)^2+3.2x+1+x\left(x^2-2^2\right)-9x\left(x^2-4x+4\right)+57=0\)
\(\Rightarrow8x^3+12x^2+6x+1+x^3-4x-9x^3+36x^2-36x+57=0\)
\(\Rightarrow48x^2-34x+58=0\)
\(\Rightarrow2\left(24x^2-17x+29\right)=0\)
\(\Rightarrow24x^2-17x+29=0\)
... Tới đây mình bí luôn rồi, sorry
Câu a : \(x^3+9x^2+27x+19=0\)
\(\Leftrightarrow\left(x^3+9x^2+27x+27\right)-8=0\)
\(\Leftrightarrow\left(x+3\right)^3-2^3=0\)
\(\Leftrightarrow\left(x+3-2\right)\left[\left(x+3\right)^2+2\left(x+3\right)+2^2\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+8x+19\right)=0\)
\(\Leftrightarrow x+1=0\) ( Vì : \(x^2+8x+19>0\))
\(\Leftrightarrow x=-1\)
Vậy \(x=-1\)
Câu b : \(\left(2x+1\right)^3+x\left(x-2\right)\left(x+2\right)-9x\left(x-2\right)^2+57=0\)
\(\Leftrightarrow8x^3+12x^2+6x+1+x^3-4x-9x^3+36x^2-36x+57=0\)
\(\Leftrightarrow48x^2-34x+58=0\)
\(\Rightarrow PTVN\)
Vậy ko có giá trị của x