Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) (x−1):0,16=−9:(1−x)
\(\Rightarrow\)(x-1):0,16= 9:(-1):(x-1)
\(\Rightarrow\)(x-1):0,16=9:(x-1)
\(\Rightarrow\)(x-1).(x-1)= 9. 0,16
\(\Rightarrow\)(x-1)\(^2\)= 1,44=1,2\(^2\)=(-1,2)\(^2\)
\(\Rightarrow\)x-1=1,2\(\Rightarrow\)x=2,2
hoặc x-1= -1,2\(\Rightarrow\)x= -0,2
Vậy x =2,2 ; x=0,2
...............................
\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
a) \(A=2x^2-\dfrac{1}{3}y\)
A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)
A=\(\dfrac{5}{3}\)\(x^2y\)
Tại \(x=2;y=9\) ta có
A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60
Vậy tại \(x=2;y=9\) biểu thức A= 60
b) P=\(2x^2+3xy+y^2\) (\(y^2\) là 1\(y^2\) nha bạn)
P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)
P= 6\(x^3y^3\)
Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có
P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)
Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)
c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)
=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)
=\(-\dfrac{1}{3}\)\(x^4y^2\)
Tại \(x=2;y=\dfrac{1}{4}\)ta có
\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)= \(-\dfrac{1}{3}\)
CHÚC BẠN HỌC TỐT NHA
a: \(2\left|3-2x\right|+\dfrac{1}{2}=\dfrac{5}{2}\)
=>\(2\left|2x-3\right|=2\)
=>|2x-3|=1
=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
b: \(x^2\left(2^x-6\right)-2x^3=0\)
=>\(x^2\left(2^x-6-2x\right)=0\)
=>\(\left[{}\begin{matrix}x^2=0\\2^x-6-2x=0\end{matrix}\right.\Leftrightarrow x=0\)
d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)
Do đó: x=18; y=12; z=9
a) Thay x + 3y - 2z vào biểu thức ta có:
\(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhua ta có:
\(\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = \dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\)
=\(\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)
=\(\dfrac{36 + 9}{9}\) = 5
=> \(\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6
=>
=>
Vậy ...
(Bạn dựa theo cách này và lm những bài tiếp nhé!)
b) \(\left(x-\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
\(\Rightarrow\left(x-\dfrac{2}{9}\right)^3=\left[\left(\dfrac{2}{3}\right)^2\right]^3=\left(\dfrac{4}{9}\right)^3\)
\(\Rightarrow x-\dfrac{2}{9}=\dfrac{4}{9}\)
\(\Rightarrow x=\dfrac{2}{3}\)
\(\left|x\left(x+\dfrac{1}{2}\right)\right|=x\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}\right)=-x\\x\left(x+\dfrac{1}{2}\right)=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}\right)+x=0\\x\left(x+\dfrac{1}{2}\right)-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}+1\right)=0\\x\left(x+\dfrac{1}{2}-1\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{3}{2}\right)=0\\x\left(x-\dfrac{1}{2}\right)=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-\dfrac{3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{-\dfrac{3}{2};0;\dfrac{1}{2}\right\}\)
Chúc bạn học tốt!!!
\(1)\left|x\left(x+\dfrac{1}{2}\right)\right|=x\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}\right)=x\\x\left(x+\dfrac{1}{2}\right)=x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}\right)+x=0\\x\left(x+\dfrac{1}{2}\right)-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{1}{2}+1\right)=0\\x\left(x+\dfrac{1}{2}-1\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\left(x+\dfrac{3}{2}\right)=0\\x\left(x-\dfrac{1}{2}\right)=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{-3}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{-3}{2};0;\dfrac{1}{2}\right\}\)