K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2017

Nguyễn Huy Tú Nguyễn Thanh Hằng

7 tháng 8 2017

1)

\(\left|2x-3\right|=2x-3\)

\(\Leftrightarrow\) \(2x-3\ge0\)

\(\Leftrightarrow\) \(2x\ge3\)

\(\Leftrightarrow\) \(x\ge\dfrac{3}{2}\)

2)

\(\left|5x-\dfrac{2}{3}\right|=\dfrac{2}{3}-5x\)

\(\Leftrightarrow\) \(5x-\dfrac{2}{3}\le0\)

\(\Leftrightarrow\) \(5x\le\dfrac{2}{3}\)

\(\Leftrightarrow\) \(x\le\dfrac{2}{15}\)

3)

\(\left|3-x\right|+\left|2y-5\right|\le0\)\(\left\{{}\begin{matrix}\left|3-x\right|\ge0\\\left|2y-5\right|\ge0\end{matrix}\right.\)

nên \(\left|3-x\right|+\left|2y-5\right|=0\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left|3-x\right|=0\\\left|2y-5\right|=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}3-x=0\\2y-5=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\2y=5\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=3\\y=\dfrac{5}{2}\end{matrix}\right.\)

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)

23 tháng 11 2021

\(a,\Rightarrow\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}5x=\dfrac{1}{7}\\5x=-\dfrac{13}{7}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{35}\\x=-\dfrac{13}{35}\end{matrix}\right.\\ b,\Rightarrow\left(-\dfrac{1}{8}\right)^x=\dfrac{1}{64}=\left(-\dfrac{1}{8}\right)^2\Rightarrow x=2\\ c,\Rightarrow\left(x-2\right)\left(2x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{3}{2}\end{matrix}\right.\\ d,\Rightarrow\left(x+1\right)^{x+10}-\left(x+1\right)^{x+4}=0\\ \Rightarrow\left(x+1\right)^{x+4}\left[\left(x+1\right)^6-1\right]=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\\left(x+1\right)^6=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x+1=1\\x+1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=-2\end{matrix}\right.\\ e,\Rightarrow\dfrac{3}{4}\sqrt{x}=\dfrac{5}{6}\left(x\ge0\right)\\ \Rightarrow\sqrt{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{100}{81}\)

P(x)=-5x^3-1/3+8x^4+x^2

Q(x)=x^4-2x^3+x^2-5x-2/3

P(x)+Q(x)

=x^4-2x^3+x^2-5x-2/3+8x^4-5x^3+x^2-1/3

=9x^4-7x^3+2x^2-5x-1

P(x)-Q(x)

=x^4-2x^3+x^2-5x-2/3-8x^4+5x^3-x^2+1/3

=-7x^4+3x^3-5x-1/3

20 tháng 7 2021

`(5x-y)=(5x)^12-2.5x.y+y^2=25x^2-10xy+y^2`

`(2x+y^2)^2=4x^2+4xy^2+y^4`

`(x^2+2/5 y)(x^2 -2/5 y)=(x^2)^2 - (2/5 y)^2 = x^4 - 4/25 y^2`

20 tháng 7 2021

\(\left(5x-y\right)^2=25x^2-10xy+y^2\)

\(\left(2x+y^2\right)^3=8x^3+12x^2y^2+6xy^4+y^6\)

\(\left(x^2+\dfrac{2}{5}y\right)\left(x^2-\dfrac{2}{5}y\right)=x^4-\dfrac{4}{25}y^2\)

28 tháng 9 2021

a) \(\left|3x-\dfrac{1}{2}\right|+\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|=0\)

Do \(\left|3x-\dfrac{1}{2}\right|,\left|\dfrac{1}{4}y+\dfrac{3}{5}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}3x-\dfrac{1}{2}=0\\\dfrac{1}{4}y+\dfrac{3}{5}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{6}\\y=-\dfrac{12}{5}\end{matrix}\right.\)

b) \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|+\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\le0\)

Do \(\left|\dfrac{3}{2}x+\dfrac{1}{9}\right|,\left|\dfrac{5}{7}y-\dfrac{1}{2}\right|\ge0\forall x,y\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3}{2}x+\dfrac{1}{9}=0\\\dfrac{5}{7}y-\dfrac{1}{2}=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{2}{27}\\y=\dfrac{7}{10}\end{matrix}\right.\)

a: \(A\left(x\right)+B\left(x\right)\)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}+2x^3-3x^2-7x+\dfrac{1}{5}\)

\(=8x^2-12x\)

b: C(x)=A(x)-B(x)

\(=-2x^3+11x^2-5x-\dfrac{1}{5}-2x^3+3x^2+7x-\dfrac{1}{5}\)

\(=-4x^3+14x^2+2x-\dfrac{2}{5}\)

a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)

\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)

\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)

hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)

b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)

nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)

hay \(x=\dfrac{8}{41}\)

c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)

d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)

\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)

\(\Leftrightarrow\left|2x-1\right|=11\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)

13 tháng 1 2018

a,

\(\left(\dfrac{3}{5}x-\dfrac{2}{3}x-x\right)\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x\cdot\dfrac{1}{7}=-\dfrac{5}{21}\)

\(\Rightarrow\dfrac{-16}{15}x=\dfrac{-\dfrac{5}{21}}{\dfrac{1}{7}}=-\dfrac{5}{3}\)

\(\Rightarrow x=\dfrac{-\dfrac{5}{3}}{-\dfrac{16}{15}}=\dfrac{25}{16}\)

b,

\(\left(5x-1\right)\left(2x+\dfrac{1}{3}\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\2x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=-\dfrac{1}{6}\end{matrix}\right.\)

c,

\(\dfrac{5\left|x+1\right|}{2}=\dfrac{90}{\left|x+1\right|}\)

\(\Rightarrow5\left|x+1\right|^2=180\)

\(\Rightarrow\left|x+1\right|^2=36\)

\(\left|x+1\right|\ge0\)

=> x + 1 = 6 <=> x = 7

28 tháng 10 2023

a, \(x^2\)  - 19 = 5.9

     \(x^2\) - 19 = 45

     \(x^2\)         = 45 + 19

     \(x^2\)         = 64

      \(x^2\)        = 82

      \(x\)         = 8 

28 tháng 10 2023

b, (2\(x\) + 1)3 = -0,001

    (2\(x\) + 1)3 = (-0,1)3

     2\(x\) + 1   = -0,1

     2\(x\)        = -0,1 - 1

     2\(x\)       = - 1,1

       \(x\)      = -1,1: 2

       \(x\)      = -  0,55