Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}-3x+\left|x-1\right|=0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}-0\\ \Rightarrow3x+\left|x-1\right|=\dfrac{1}{2}\\ \Rightarrow\left|x-1\right|=\dfrac{1}{2}-3x\\ \Rightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}-3x\\x-1=-\dfrac{1}{2}+3x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x+3x=\dfrac{1}{2}+1\\x-3x=-\dfrac{1}{2}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}4x=\dfrac{3}{2}\\2x=\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)
__
\(\dfrac{1}{2}\left|2x-1\right|+\left|2x-1\right|=x+1\\ \Rightarrow\left|2x-1\right|\cdot\left(\dfrac{1}{2}+1\right)=x+1\\ \Rightarrow\left|2x-1\right|\cdot\dfrac{3}{2}=x+1\\ \Rightarrow\left|2x-1\right|=x+1:\dfrac{3}{2}\\ \Rightarrow\left|2x-1\right|=x+\dfrac{2}{3}\\ \Rightarrow\left[{}\begin{matrix}2x-1=x+\dfrac{2}{3}\\2x-1=-x-\dfrac{2}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}2x-x=\dfrac{2}{3}+1\\2x+x=-\dfrac{2}{3}+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\3x=\dfrac{1}{3}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{1}{9}\end{matrix}\right.\)
Đặt bt trên là A nha
Đổi |x-1|=|1-x|
Suy ra A=|1-x|+x-2|+|x-3|
Áp dụng BĐTGTTĐ ta có
A=|1-x|+x-2|+|x-3|\(\ge\)|1-x+x-3|=2
Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\1< x< 3\end{cases}}\)đồng thời xảy ra
Vậy x =2
b,
\(\left|3x+\frac{1}{2}\right|\ge0\)
\(\left|3x+\frac{1}{6}\right|\ge0\)
..........
\(\left|3x+380\right|\ge0\)
Suy ra đề bài \(\ge\)0
suy ra 58x \(\ge\)0
Suy ra \(3x+\frac{1}{2}+3x+\frac{1}{6}+......+3x+380=58x\)
Tự tính nhé hok tốt
(3x - 1)10 = (3x - 1)20
(3x - 1)20 - (3x - 1)10 = 0
(3x - 1)10 . (3x - 1)10 - (3x - 1)10 . 1 = 0
(3x - 1)10 . [(3x - 1)10 - 1] = 0
\(\Rightarrow\orbr{\begin{cases}\left(3x-1\right)^{10}=0\\\left(3x-1\right)^{10}-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}3x-1=0\\\left(3x-1\right)^{10}=1\end{cases}}\)
3x - 1 = 0 (3x - 1)10 = 1
=> 3x = 1 3x - 1 = 1 hoặc 3x - 1 = -1
=> x = \(\frac{1}{3}\) 3x = 2 hoặc 3x = 0
x = \(\frac{2}{3}\) hoặc x = 0
\(\left|5x+13\right|=2x-7\)
khi \(x>\frac{7}{2}\), biểu thức có dạng:
\(\orbr{\begin{cases}5x+13=2x-7\\5x+13=7-2x\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=-20\\7x=-6\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{20}{3}\\x=-\frac{6}{7}\end{cases}}}\)
Ta có: |x - 10| + 10 = x
=> |x - 10| = x - 10
=> x - 10 = x - 10
x - 10 = -(x - 10)
=> x - 10 = 0
=> x = 10 + 0
=> x = 10
Ta có: \(\left|3x+4\right|+\left|3x-1\right|=\left|3x+4\right|+\left|1-3x\right|\)
Theo bất đẳng thức: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\), ta có:
\(\left|3x+4\right|+\left|1-3x\right|\ge\left|3x+4+1-3x\right|=5\Rightarrow\left|3x+4\right|+\left|3x-1\right|\ge5\) (*)
Mặt khác:
Với mọi x ta có:
\(3\left(x+1\right)^2\ge0\Rightarrow3\left(x+1\right)^2+4\ge4\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}\le\dfrac{20}{4}\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}\le5\) (**)
Từ (*)(**) \(\Rightarrow\dfrac{20}{3\left(x+1\right)^2+4}=5\)
\(\Rightarrow3\left(x+1\right)^2+4=4\)
\(\Rightarrow3\left(x+1\right)^2=0\)
\(\Rightarrow\left(x+1\right)^2=0\)
\(\Rightarrow x=-1\)
mong các bạn giúp tớ sáng mai phải đi học rùi huhuhu