Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) => \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\) => \(x=\frac{6}{5}.\left(\frac{1}{3}-\sqrt[3]{\frac{4}{9}}\right)\)
b) \(\frac{1}{3}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\) => \(\left(\frac{1}{2}x-1\right)^4=\frac{3}{48}=\frac{1}{16}\)
=> \(\frac{1}{2}x-1=\frac{1}{2}\) hoặc \(\frac{1}{2}x-1=-\frac{1}{2}\)
=> \(\frac{1}{2}x=\frac{3}{2}\) hoặc \(\frac{1}{2}x=\frac{1}{2}\) => x = 3 hoặc x = 1
c) \(\left(1+5\right).\left(\frac{3}{5}\right)^{x-1}=\frac{54}{25}\) => \(\left(\frac{3}{5}\right)^{x-1}=\frac{9}{25}=\left(\frac{3}{5}\right)^2\)
=> x - 1= 2 => x = 3
d) \(\left(1+\left(\frac{2}{3}\right)^2\right).\left(\frac{2}{3}\right)^x=\frac{101}{243}\) => \(\frac{13}{9}.\left(\frac{2}{3}\right)^x=\frac{101}{243}\)
=> \(\left(\frac{2}{3}\right)^x=\frac{101}{243}:\frac{13}{9}=\frac{101}{351}\) (có lẽ đề sai)
2) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\); \(\frac{1}{81^8}=\frac{1}{\left(3^4\right)^8}=\frac{1}{3^{32}}\)
Vì 333 > 332 => \(\frac{1}{3^{33}}\) < \(\frac{1}{3^{32}}\) => \(\frac{1}{27^{11}}\) < \(\frac{1}{81^8}\)
b) \(\frac{1}{3^{99}}=\frac{1}{\left(3^3\right)^{33}}=\frac{1}{27^{33}}
a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)
\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)
\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)
em muốn hỏi là tại sao 3,5 bên trên xuống dưới lại là 3 và -x +2/5 của em xuống dưới lại chuyển thành x-2/5 ạ mong anh giải đáp
Bài 1 :
a) \(\frac{12}{21}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{4}{7}-\frac{3}{7}+\left(-\frac{2}{3}\right)=\frac{1}{7}-\frac{2}{3}=-\frac{11}{21}\)
b) \(\left(-\frac{25}{13}\right)+\left(-\frac{9}{17}\right)+\frac{12}{13}+\left(-\frac{25}{17}\right)\)
\(=\left[\left(-\frac{25}{13}\right)+\frac{12}{13}\right]+\left[\left(-\frac{9}{17}\right)+\left(-\frac{25}{17}\right)\right]\)
\(=-1+\left(-2\right)=-1-2=-3\)
c) \(\frac{5}{9}\cdot\frac{7}{13}+\frac{5}{9}\cdot\frac{9}{13}-\frac{5}{9}\cdot\frac{3}{13}=\frac{5}{9}\left(\frac{7}{13}+\frac{9}{13}-\frac{3}{13}\right)=\frac{5}{9}\cdot1=\frac{5}{9}\)
Bài 2 :
a) \(\frac{2}{3}x+\frac{5}{7}=\frac{3}{10}\)
=> \(\frac{2}{3}x=\frac{3}{10}-\frac{5}{7}=-\frac{29}{70}\)
=> \(x=\left(-\frac{29}{70}\right):\frac{2}{3}=\left(-\frac{29}{70}\right)\cdot\frac{3}{2}=-\frac{87}{140}\)
b) \(x:\frac{5}{2}-\frac{1}{2}=-\frac{2}{3}\)
=> \(x:\frac{5}{2}=-\frac{2}{3}+\frac{1}{2}=-\frac{1}{6}\)
=> \(x=\left(-\frac{1}{16}\right)\cdot\frac{5}{2}=-\frac{5}{32}\)
c) Bạn chỉ cần xét hai trường hợp âm và dương thôi :>
\(1,\\ \left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\\ \Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{10}\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\\left(x-7\right)^{10}=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-7=0\\x-7=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)
\(2,\\ a,\left|2x-3\right|>5\Leftrightarrow\left[{}\begin{matrix}2x-3< -5\\2x-3>5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< -1\\x>4\end{matrix}\right.\\ b,\left|3x-1\right|\le7\Leftrightarrow\left[{}\begin{matrix}3x-1\le7\\1-3x\le7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\le\dfrac{8}{3}\\x\ge-2\end{matrix}\right.\\ c,\cdot x< -\dfrac{3}{2}\\ \Leftrightarrow5-3x+\left(-2x-3\right)=7\Leftrightarrow2-5x=7\Leftrightarrow x=-1\left(ktm\right)\\ \cdot-\dfrac{3}{2}\le x\le\dfrac{5}{3}\\ \Leftrightarrow\left(5-3x\right)+\left(2x+3\right)=7\Leftrightarrow8-x=7\Leftrightarrow x=1\left(tm\right)\\ \cdot x>\dfrac{5}{3}\\ \Leftrightarrow\left(3x-5\right)+\left(2x+3\right)=7\Leftrightarrow5x-2=7\Leftrightarrow x=\dfrac{9}{5}\left(tm\right)\\ \Leftrightarrow S=\left\{1;\dfrac{9}{5}\right\}\)
b) Ta có: \(5^{x+4}-3\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow2\cdot5^{x+3}=2\cdot5^{11}\)
\(\Leftrightarrow x+3=11\)
hay x=8
c) Ta có: \(2\cdot3^{x+2}+4\cdot3^{x+1}=10\cdot3^6\)
\(\Leftrightarrow18\cdot3^x+12\cdot3^x=10\cdot3^6\)
\(\Leftrightarrow30\cdot3^x=30\cdot3^5\)
Suy ra: x=5
d) Ta có: \(6\cdot8^{x-1}+8^{x+1}=6\cdot8^{19}+8^{21}\)
\(\Leftrightarrow6\cdot\dfrac{8^x}{8}+8^x\cdot8=6\cdot8^{19}+64\cdot8^{19}\)
\(\Leftrightarrow8^x\cdot\dfrac{35}{4}=70\cdot8^{19}\)
\(\Leftrightarrow8^x=8^{20}\)
Suy ra: x=20
11/13-(5/42-x)=(15/28-11/13)
11/13-(5/42-x)=-37/182
(5/42-x)=11/13+37/182
(5/42-x)=191/182
x=5/42-191/182
x=-254/273
vậy x=-254/273
2) a) \(\frac{1}{27^{11}}=\frac{1}{\left(3^3\right)^{11}}=\frac{1}{3^{33}}\)
\(\frac{21}{81^8}=\frac{21}{\left(3^4\right)^8}=\frac{21}{3^{32}}=\frac{21.3}{3^{33}}=\frac{63}{3^{33}}>\frac{1}{3^{33}}\)
=> \(\frac{21}{81^8}>\frac{1}{27^{11}}\)
b) Rõ ràng : 399 < 1121 => \(\frac{1}{399}>\frac{1}{11^{21}}\)
a) \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{5}{6}-\frac{21}{54}\)=> \(\left(\frac{1}{3}-\frac{5}{6}x\right)^3=\frac{24}{54}=\frac{4}{9}\)
=> \(\frac{1}{3}-\frac{5}{6}x=\sqrt[3]{\frac{4}{9}}\) => \(\frac{5}{6}x=1-\sqrt[3]{\frac{4}{9}}\)
=> x = \(\frac{6}{5}-\frac{6}{5}.\sqrt[3]{\frac{4}{9}}\)
b) => \(\frac{1}{13}\left(\frac{1}{2}x-1\right)^4=\frac{1}{12}-\frac{1}{16}=\frac{1}{48}\)
=> \(\left(\frac{1}{2}x-1\right)^4=\frac{13}{48}\)
=> \(\frac{1}{2}x-1=\sqrt[4]{\frac{13}{48}}\) hoặc \(\frac{1}{2}x-1=-\sqrt[4]{\frac{13}{48}}\)
=> \(x=2+2\sqrt[4]{\frac{13}{48}}\) hoặc \(x=2-2\sqrt[4]{\frac{13}{48}}\)