K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

Với những bài thế này thì phải chia trường hợp để phá ngoặc.

TH1 : \(x< -2;\)có:

\(\Rightarrow-\left(5x-4\right)=-\left(x+2\right)\)

\(4-5x=-x-2\)

\(6=-4x\Rightarrow x=-\frac{3}{2}>-2\)( Không thỏa mãn )

TH2 : \(-2\le x< \frac{4}{5};\)ta có :

\(-\left(5x-4\right)=x+2\)

\(4-5x=x+2\)

\(2=6x\)

\(x=\frac{1}{3}\) ( thỏa mãn)

TH3 : \(x\ge\frac{4}{5};\)có :

\(5x-4=x+2\)

\(4x=6\)

\(x=\frac{3}{2}\)(thỏa mãn )

Vậy \(\left[\begin{array}{nghiempt}x=\frac{1}{3}\\x=\frac{3}{2}\end{array}\right.\)

 

21 tháng 10 2016

Dũng sai

8 tháng 7 2017

len google di ban

mk chua hoc bai nay

28 tháng 6 2018

(2x + 3)2 - (5x - 4)(5x - 4) = ( x + 5)2 - (3x - 1)(7x + 2) - (x2 - 1 +1)

<=> 4x2 + 12x + 9 - ( 25x2 - 16)= x2 + 10x + 25 - (21x2 + 6x - 7x - 2) -x2

<=> 4x2 - 25x2 - x2 + 21x2 + x2 + 12x - 10x + 6x - 7x + 9 + 16 - 25 - 2 = 0

<=> x - 2 = 0

<=> x = 2

Vậy x = 2

27 tháng 7 2016

Hỏi đáp Toán

5 tháng 3 2017

a) Áp dụng bđt |a| + |b| \(\ge\) |a+b| ta có:

\(\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\ge\left|1-x+x+3\right|\)

\(\ge\left|4\right|=4\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix}x-1\le0\\x+3\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\)\(\Leftrightarrow-3\le x\le1\)

b) Xét từng khoảng

+ \(x< -\frac{3}{2}\)

+ \(-\frac{3}{2}\le x< 4\)

+ \(x\ge4\)

5 tháng 3 2017

a) Vì \(\left|x-1\right|+\left|x+3\right|=4\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|=4\)

Nhận thấy \(\left[{}\begin{matrix}\left|1-x\right|\ge1-x\forall x\\\left|x+3\right|\ge x+3\forall x\end{matrix}\right.\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge1-x+x+3\)

\(\Rightarrow\left|1-x\right|+\left|x+3\right|\ge4\)

Dấu \("="\) xảy ra khi \(\left[{}\begin{matrix}1-x\ge0\\x+3\ge0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\ge-3\end{matrix}\right.\) \(\Rightarrow-3\le x\le1\)

\(\Rightarrow x\in\left\{-3-2;-1;0;1\right\}\)

Vậy \(x\in\left\{-3;-2;-1;0;1\right\}\).

a) Ta có: \(5x^2-3x\left(x+2\right)\)

\(=5x^2-3x^2-6x\)

\(=2x^2-6x\)

b) Ta có: \(3x\left(x-5\right)-5x\left(x+7\right)\)

\(=3x^2-15x-5x^2-35x\)

\(=-2x^2-50x\)

c) Ta có: \(3x^2y\left(2x^2-y\right)-2x^2\left(2x^2y-y^2\right)\)

\(=3x^2y\left(2x^2-y\right)-2x^2y\left(2x^2-y\right)\)

\(=x^2y\left(2x^2-y\right)=2x^4y-x^2y^2\)

d) Ta có: \(3x^2\left(2y-1\right)-\left[2x^2\cdot\left(5y-3\right)-2x\left(x-1\right)\right]\)

\(=6x^2y-3x^2-\left[10x^2y-6x^2-2x^2+2x\right]\)

\(=6x^2y-3x^2-10x^2y+6x^2+2x^2-2x\)

\(=-4x^2y+5x^2-2x\)

e) Ta có: \(4x\left(x^3-4x^2\right)+2x\left(2x^3-x^2+7x\right)\)

\(=4x^4-16x^3+4x^4-2x^3+14x^2\)

\(=8x^4-18x^3+14x^2\)

f) Ta có: \(25x-4\left(3x-1\right)+7x\left(5-2x^2\right)\)

\(=25x-12x+4+35x-14x^3\)

\(=-14x^3+48x+4\)

18 tháng 5 2016

1) \(x=\frac{99}{196}\)

2) \(x=-2\)

3) \(x\approx-0,59\)

giup mk giải rõ dc ko

Bài 2:

a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)

b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)

\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)

\(=x^4-22x^3+108x^2-45x\)

c: \(=12x^5-18x^4+30x^3-24x^2\)

d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)

\(\Leftrightarrow x^3-6x^2+12x-8+3\left(4x^2-12x+9\right)=x^3+9x^2+27x+27-5\left(9x^2+6x+1\right)+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow-6x^2+12x-8+12x^2-36x+27=9x^2+27x+27-45x^2-30x-5+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2-24x+19=-36x^2-3x+22+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow42x^2-21x-3-x^2+4x-3=0\)

\(\Leftrightarrow41x^2-17x-6=0\)

\(\Delta=\left(-17\right)^2-4\cdot41\cdot\left(-6\right)=1273\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{17-\sqrt{1273}}{82}\\x_2=\dfrac{17+\sqrt{1273}}{82}\end{matrix}\right.\)