Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)^2=81\)
\(\Rightarrow\left(x+1\right)^2=9^2\)
\(\Rightarrow x+1=9\)
\(\Rightarrow x=9-1=8\)
Vậy x = 8
b, \(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=\left(-4\right)-5\)
\(\Rightarrow x=-9\)
Vậy x = -9
c, \(\left(2x-3\right)^2=9\)
\(\Rightarrow\left(2x-3\right)^2=3^2\)
\(\Rightarrow2x-3=3\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy x = 3
d, \(\left(4x+1\right)^3=27\)
\(\Rightarrow\left(4x+1\right)^3=3^3\)
\(\Rightarrow4x+1=3\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
Vậy x = \(\frac{1}{2}\)
a)
\((3x-7)^5=0\Rightarrow 3x-7=0\Rightarrow x=\frac{7}{3}\)
b)
\(\frac{1}{4}-(2x-1)^2=0\)
\(\Leftrightarrow (2x-1)^2=\frac{1}{4}=(\frac{1}{2})^2=(-\frac{1}{2})^2\)
\(\Rightarrow \left[\begin{matrix} 2x-1=\frac{1}{2}\\ 2x-1=\frac{-1}{2}\end{matrix}\right.\Rightarrow \Rightarrow \left[\begin{matrix} x=\frac{3}{4}\\ x=\frac{1}{4}\end{matrix}\right.\)
c)
\(\frac{1}{16}-(5-x)^3=\frac{31}{64}\)
\(\Leftrightarrow (5-x)^3=\frac{1}{16}-\frac{31}{64}=\frac{-27}{64}=(\frac{-3}{4})^3\)
\(\Leftrightarrow 5-x=\frac{-3}{4}\)
\(\Leftrightarrow x=\frac{23}{4}\)
d)
\(2x=(3,8)^3:(-3,8)^2=(3,8)^3:(3,8)^2=3,8\)
\(\Rightarrow x=3,8:2=1,9\)
e)
\((\frac{27}{64})^9.x=(\frac{-3}{4})^{32}\)
\(\Leftrightarrow [(\frac{3}{4})^3]^9.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow (\frac{3}{4})^{27}.x=(\frac{3}{4})^{32}\)
\(\Leftrightarrow x=(\frac{3}{4})^{32}:(\frac{3}{4})^{27}=(\frac{3}{4})^5\)
f)
\(5^{(x+5)(x^2-4)}=1\)
\(\Leftrightarrow (x+5)(x^2-4)=0\)
\(\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2-4=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x+5=0\\ x^2=4=2^2=(-2)^2\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-5\\ x=\pm 2\end{matrix}\right.\)
g)
\((x-2,5)^2=\frac{4}{9}=(\frac{2}{3})^2=(\frac{-2}{3})^2\)
\(\Rightarrow \left[\begin{matrix} x-2,5=\frac{2}{3}\\ x-2,5=\frac{-2}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{19}{6}\\ x=\frac{11}{6}\end{matrix}\right.\)
h)
\((2x+\frac{1}{3})^3=\frac{8}{27}=(\frac{2}{3})^3\)
\(\Rightarrow 2x+\frac{1}{3}=\frac{2}{3}\Rightarrow x=\frac{1}{6}\)
Bài 2
\(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)
\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)
a, \(3^{2x+2}=9^{10}\\ 3^{2x+2}=\left(3^2\right)^{10}\\ 3^{2x+2}=3^{20}\\ \Rightarrow2x+2=20\\ \Rightarrow2x=18\\ \Rightarrow x=9\)Vậy x = 9
b, \(3^{3x}=27^{13}\\ 3^{3x}=\left(3^3\right)^{13}\\ 3^{3x}=3^{39}\\ \Rightarrow3x=39\\ \Rightarrow x=13\)Vậy x = 13
c, \(2^x=4^6\cdot16^3\\ 2^x=\left(2^2\right)^6\cdot\left(2^4\right)^3\\ 2^x=2^{12}\cdot2^{12}\\ 2^x=2^{24}\\ \Rightarrow x=24\)Vậy x = 24
d, \(2^x=32^5\cdot64^6\\ 2^x=\left(2^5\right)^5\cdot\left(2^6\right)^6\\ 2^x=2^{25}\cdot2^{36}\\ 2^x=2^{61}\\ \Rightarrow x=61\)Vậy x = 61
\(\Leftrightarrow\left(\dfrac{4}{3}\right)^{150}:x=\left(-\dfrac{4}{3}\right)^{135}\)
\(\Leftrightarrow x=\left(\dfrac{4}{3}\right)^{150}:\left(-\dfrac{4}{3}\right)^{135}=-\left(\dfrac{4}{3}\right)^{15}\)
b ơi minh thấy đề bài nó cứ kì kì
nếu như bn viết đề bài đúng thì mình có thể lm đc cho bn đó
1.a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\frac{3^{15}}{5^{15}}.\frac{5^{10}}{3^{10}}=\frac{3^5}{5^5}=\left(\frac{3}{5}\right)^5\)
b)\(\left(\frac{2}{3}\right)^{10}:\left(\frac{4}{9}\right)^4=\frac{2^{10}}{3^{10}}.\frac{3^8}{2^8}=\frac{2^2}{3^2}=\left(\frac{2}{3}\right)^2\)
2.
a)\(2^x=4\Rightarrow2^x=2^2\Rightarrow x=2\)
b)\(x^3=-27\Rightarrow x^3=-3^3\Rightarrow x=-3\)
c)\(x^2=16\Rightarrow x=\pm4\)
d)\(\left(x+1\right)^2=9\Rightarrow\hept{\begin{cases}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{cases}}\)
1.
a) 2n : 4 = 16
2n = 16.4
2n = 64
2n = 26
=> n = 6
b) 5n = 625
5n = 54
=> n = 4
c) 2n . 16 = 128
2n = 128 : 16
2n = 8
2n = 23
=> n = 3
d) 3n+3 = 81
3n+3 = 34
=> n + 3 = 4
=> n = 4 - 3
=> n = 1
1.
a) 2n : 4 = 16
2n = 16.4
2n = 64
2n = 26
=> n = 6
b) 5n = 625
5n = 54
=> n = 4
c) 2n . 16 = 128
2n = 128 : 16
2n = 8
2n = 23
=> n = 3
d) 3n+3 = 81
3n+3 = 34
=> n + 3 = 4
=> n = 4 - 3
=> n = 1
2.
a) x3 = 64
x3 = 43
=> x = 4
b) (2x + 1)3 = 27
(2x + 1)3 = 33
2x + 1 = 3
2x = 3 - 1
2x = 2
=> x = 1
c) x3 = x
=> x = {0;1}
d) 25 + 5x = 75.73
25 + 5x = 5764801
5x = 5764801 - 25
5x = 5764776
=> không có số tự nhiên x thoản mãn
\(\left(\dfrac{9}{16}\right)^5\cdot x=\left(\dfrac{27}{64}\right)^3\)
\(\Leftrightarrow\left(\dfrac{3}{4}\right)^{10}\cdot x=\left(\dfrac{3}{4}\right)^9\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^9:\left(\dfrac{3}{4}\right)^{10}\)
\(\Rightarrow x=\left(\dfrac{3}{4}\right)^{-1}\)
\(\Rightarrow x=\dfrac{4}{3}\)
Vậy x=4/3
(\(\dfrac{9}{16}\))5\(\times\) \(x\) = (\(\dfrac{27}{64}\))3
\(x\) = (\(\dfrac{27}{64}\))3 : (\(\dfrac{9}{16}\))5
\(x\) = (\(\dfrac{3^3}{2^6}\))3: (\(\dfrac{3^2}{2^4}\))5
\(x\) = \(\dfrac{3^9}{2^{18}}\) : \(\dfrac{3^{10}}{2^{20}}\)
\(x\) = \(\dfrac{3^9}{2^{18}}\) \(\times\) \(\dfrac{2^{20}}{3^{10}}\)
\(x\) = \(\dfrac{2^2}{3}\)
\(x\) = \(\dfrac{4}{3}\)