Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{6z}{36}\)
áp dụng t\c của dãy tỉ số = nhau ta có :
\(\frac{x}{2}=\frac{3y}{9}=\frac{6z}{36}=\frac{x+3y+6z}{2+9+36}=\frac{82}{47}\)
đến đây s s í :v
Xét hai trường hợp:
+ 4y chẵn: Khi đó 3x chẵn, loại
+ 4y lẻ: Khi đó 4y = 1 \(\Leftrightarrow\) y = 0 \(\Leftrightarrow\) 3x = 81 = 34 \(\Leftrightarrow\) x = 4
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
theo đề ta có :
\(\frac{x}{2}=\frac{y}{5}và\frac{y}{3}=\frac{z}{4}vàx+y+z=82\)
=>\(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}vax+y+z=82\)
Áp dụng tính chất của dãy tỉ số = nhau t có :
\(\frac{x}{6}=\frac{y}{15}=\frac{z}{20}=\frac{x+y+z}{6+15+20}=\frac{82}{41}=2\)
\(=>\frac{x}{6}=2=>x=12\)
\(\frac{y}{15}=2=>y=30\)
\(\frac{z}{20}=2=>y=40\)
1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)
mà x+y-z=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)
=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)
2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)
mà 3x+2y=47-42=5
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)
=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)
a/\(x:27=3,6\)
\(\Rightarrow x=97,2\)
b/\(\dfrac{2x+1}{-27}=\dfrac{-3}{2x+1}\)
\(\Rightarrow\left(2x+1\right)^2=81\)
\(\Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=8\\2x=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
Vậy \(x\in\left\{4;-5\right\}\)
\(311-x+82=46\left(x-21\right)\)
<=> \(311+82-46+21=x+x\)
<=> \(2x=368\)
<=> \(x=184\)
\(-x+821+534=499+x-84\)
<=> \(-x-x=499-84-821-534\)
<=> \(-2x=-940\)
<=> \(x=470\)
\(-\left(x-3+85\right)=x+70-71-5\)
<=> \(-x+3-85=x-6\)
<=> \(-x-x=-6-3+85\)
<=> \(-2x=76\)
<=> \(x=-38\)
a) \(\dfrac{-12}{17}< \dfrac{x}{17}< \dfrac{-8}{17}\)
\(\Rightarrow-12< x< -8\)
\(\Rightarrow x\in\left\{-11;-10;-9\right\}\)
b) \(\dfrac{-1}{2}< x< \dfrac{5}{3}\)
\(\Rightarrow\dfrac{-3}{6}< x< \dfrac{10}{6}\)
\(\Rightarrow x\in\left\{\dfrac{-2}{6};\dfrac{-1}{6};0;\dfrac{1}{6};...;\dfrac{7}{6};\dfrac{8}{6};\dfrac{9}{6}\right\}\)
c) \(3,456< x\le7,89\)
\(\Rightarrow x\in\left\{3,456;3,457,3,458;...;7,89\right\}\)
d) \(5,82< \overline{5,8x0}< 8,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)
e) \(32,82< \overline{3x,850}< 35,845\)
\(\Rightarrow x\in\left\{3;4\right\}\)