Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x+3x+1+3x+2=117\)
\(\Rightarrow\left(3x+3x+3x\right)+\left(1+2\right)=117\)
\(\Rightarrow9x+3=117\)
\(\Rightarrow9x=117-3\)
\(\Rightarrow9x=114\)
\(\Rightarrow x=114:9\)
\(\Rightarrow x=\frac{38}{3}\)
Vậy \(x=\frac{38}{3}\)
P/s : Đúng nha
~ Ủng hộ nhé
\(3x+3x+1+3x+2=117\)
\(\Leftrightarrow\left(3x+3x+3x\right)+\left(1+2\right)=117\)
\(\Leftrightarrow9x+3=117\)\(\Rightarrow9x=114\Rightarrow x=\frac{114}{9}\)
\(\text{Vậy x=}\frac{114}{9}\)
Ta sẽ đưa các tích về 1 dãy tỉ số
\(3x=5y\Leftrightarrow\frac{x}{5}=\frac{y}{3}\Leftrightarrow\frac{x}{15}=\frac{y}{9},7y=9z\Leftrightarrow\frac{y}{9}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7},x-y+z=117\left(gt\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau cho dãy tỉ số trên ta được
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\Rightarrow x=15.9=135,y=9.9=81,z=7.9=63\)
Vậy \(x=135,y=81,z=63\)
Ta có: \(3x=5y=\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x}{15}=\frac{y}{9}\)
\(7y=9z=\frac{y}{9}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{9}=\frac{z}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{9}=\frac{z}{7}=\frac{x-y+z}{15-9+7}=\frac{117}{13}=9\)
\(\Rightarrow\frac{x}{15}=9\Rightarrow x=9\cdot15=135\)
\(\frac{y}{9}=9\Rightarrow y=9\cdot9=81\)
\(\frac{z}{7}=9\Rightarrow z=9\cdot7=63\)
Vậy x=135, y=81 và z=63
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=3\\2x=-3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
c) \(2x\left(3x-1\right)-3x\left(5+2x\right)=0\)
\(\Rightarrow x\left[2\left(3x-1\right)-3\left(5+2x\right)\right]=0\)
\(\Rightarrow x\left(6x-2-15-6x\right)\)
\(\Rightarrow-16x=0\)
\(\Rightarrow x=0\)
d) \(\left(3x-2\right)\left(3x+2\right)-4\left(x-1\right)=0\)
\(\Rightarrow9x^2-4-4x+4=0\)
\(\Rightarrow9x^2-4x=0\)
\(\Rightarrow x\left(9x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\9x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\end{matrix}\right.\)
\(a,\left(2x-3\right)\left(2x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\\ b,\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=1\\x=2\end{matrix}\right.\)
Lời giải:
|5(3x+1)|+|2(3x+1)|+|3x+1|=4$
$5|3x+1|+2|3x+1|+|3x+1|=4$
$(5+2+1)|3x+1|=4$
$8|3x+1|=4$
$|3x+1|=\frac{1}{2}$
$3x+1=\pm \frac{1}{2}$
$\Rightarrow x=\frac{-1}{6}$ hoặc $x=\frac{-1}{2}$
\(3x+3x+1+3x+2=117\)
\(\Rightarrow3x+3x+3x=117-1-2\)
\(\Rightarrow3x+3x+3x=114\)
\(\Rightarrow x.\left(3+3+3\right)=114\)
\(\Rightarrow x.9=114\)
\(\Rightarrow x=\dfrac{38}{3}\)
Vậy \(x=\dfrac{38}{3}\)
=> 3x+3x+3x+1+2=117
=>9x+3=117
=>9x=117-3=114
=> x=\(\dfrac{114}{9}\)