Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1)
a) \(\dfrac{\left(-3\right)^{10}.15^5}{25^3.\left(-9\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.\left(3.5\right)^5}{\left(5^2\right)^3.\left(-3.3\right)^7}\)
\(=\dfrac{\left(-3\right)^{10}.3^5.5^5}{5^6.\left(-3\right)^7.3^7}\)
\(=\dfrac{\left(-3\right)^3.1.1}{5.1.3^2}\)
\(=\dfrac{-27.1.1}{5.1.9}\)
\(=\dfrac{-27}{45}\)
\(=\dfrac{-9}{15}\)
b)\(2^3+3.\left(\dfrac{1}{9}\right)^0-2^{-2}.4\left[\left(-2\right)^2:\dfrac{1}{2}\right].8\)
\(=8+3.1-\dfrac{1}{2^2}.4+\left[\left(4:\dfrac{1}{2}\right)\right].8\)
\(=8+3.1-\dfrac{1}{4}.4+\left[4.\dfrac{2}{1}\right].8\)
\(=8+3.1-\dfrac{1}{4}.4+8.8\)
\(=8+3-1+64\)
\(=11-1+64\)
\(=10+64\)
\(=74\)
a)\(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
Mà \(\hept{\begin{cases}x^3+x\ge0\\9x^2+9\ge0\end{cases}}\) và \(\left|x^3+x\right|-\left|9x^2+9\right|=0\)
\(\Rightarrow\hept{\begin{cases}x^3+x=0\\9x^2+9=0\end{cases}}\)
Mà \(9x^2\ge0\Leftrightarrow9x^2+9>0\)
Vậy \(x\in\left\{\varnothing\right\}\)
b) \(\left(3x+2\right)-\left(x-1\right)=4\left(x+1\right)\)
\(\Leftrightarrow3x+2-x+1=4x+4\)
\(\Leftrightarrow\left(3x-x\right)+\left(2+1\right)=4x+4\)
\(\Leftrightarrow2x+3=4x+4\)
\(\Leftrightarrow2x-4x=4-3\)
\(\Leftrightarrow-2x=1\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy\(x=\frac{-1}{2}\)
c) \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2-2-5x-10=-10\)
\(\Leftrightarrow2-2-5x=0\)
\(\Leftrightarrow0-5x=0\)
\(\Leftrightarrow5x=0\)
\(\Leftrightarrow x=0\)
Vậy x = 0
a)x=-2
b)x=1
c)x=1/2
f)x=1 hoặc x=-1
h)x=0 hoặc x=6
i)x=2
hok tốt!
_Lan Lan_
Áp dụng hằng đẳng thức:\(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
Áp dụng vào từng bài là được:
\(VD1:x^3+3x^2+3x+1=-1\)
\(\Rightarrow\left(x+1\right)^3=-1\)
\(\Rightarrow x=-2\)
\(VD2:x^3-9x^2+27x-27=-8\)
\(\Rightarrow\left(x-3\right)^3=-8\)
\(\Rightarrow x=1\)
a) 6x(5x + 3) + 3x(1 – 10x) = 7
⇒ 30x2+18x+3x-30x2=7
⇒21x=7
⇒x=\(\dfrac{7}{21}\)
⇒x= \(\dfrac{1}{3}\)
b) (3x – 3)(5 – 21x) + (7x + 4)(9x – 5) = 44
⇒15x-63x2-15+63x + 63x2-35x+36x-20=44
⇒79x-35=44
⇒79x=44+35
⇒79x=79
⇒x=1
F(x)=62+5x+8+3x-3x2+3x3
=(36+8)+(5x+3x)-3x2+3x3
=3x3-3x2+8x+44
G(x)=12x2-6-9x2+3x3
=3x3+(12x2-9x2)-6
=3x3+3x2-6
F(x)+G(x)=3x3-3x2+8x+44+3x3+3x2-6
=(3x3+3x3)+(-3x2+3x2)+8x+(44-6)
=6x3+8x+38
\(F\left(x\right)=G\left(x\right)\\ \Rightarrow6^2-5x+8+3x-3x^2+3x^3=12x^2-6-9x^2+3x^3\\ \Leftrightarrow-3x^2-2x+44=3x^2-6\\ \Leftrightarrow6x^2+2x-50=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1+\sqrt{301}}{6}\\x=\dfrac{-1-\sqrt{301}}{6}\end{matrix}\right.\)
(3x - 1)3 = -8/27
=> (3x - 1)3 = (-2/3)3
=> 3x - 1 = -2/3
=> 3x = -2/3 + 1
=> 3x = 1/3
=> x = 1/3 : 3
=> x = 1/9
x3 : 3 = 9
=> x3 = 9.3
=> x3 = 27
=> x3 = 33
=> x = 3
x10 = 25.x8
=> x10 : x8 = 25
=> x10-8 = 25
=> x2 = 52 = (-5)2
=> x = 5 hoặc x = -5
Vậy x \(\in\){-5; 5}.
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)