Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
\(\Rightarrow\frac{x-100}{24}-1+\frac{x-98}{26}-1+\frac{x-96}{26}-1=0\)
\(\frac{x-124}{24}+\frac{x-124}{26}+\frac{x-124}{28}=0\)
\(\left(x-124\right)\left(\frac{1}{26}+\frac{1}{24}+\frac{1}{28}\right)=0\)
\(\Rightarrow x-124=0\Rightarrow x=124\)
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)
\(\Rightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{x.\left(x+1\right)}=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{2}{5}-\frac{2}{x+1}=\frac{3}{10}\)
=> \(\frac{2}{x+1}\)= \(\frac{1}{10}=\frac{2}{20}\)
=> x +1 = 20 => x = 19
bạn trên sai rồi, nếu đã nhân đôi lên tất cả thì cx phải nhân luôn con cuối chứ
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{12}=\dfrac{z}{1}=\dfrac{x-y}{3-12}=\dfrac{18}{-9}=-2\)
Do đó: x=-6; y=-24; z=-2
b) (4x -1)2 = (1-4x)4 (1)
Vì (1 - 4x) = (4x - 1)
\(\Rightarrow\)(1 - 4x)4 = [ -( 4x -1)4 ]
Vì (1-4x)4 = ( 4x - 1)4
Do đó (1) có dạng :
(4x - 1)2 = (4x - 1)2
Đặt 4x - 1 = x, ta có :
x2 = x4
x2 ( 1 - x2 ) = 0
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\x^2=\orbr{\begin{cases}1^2\\\left(-1\right)^2\end{cases}}\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\orbr{\begin{cases}x=1\\x=-1\end{cases}}\end{cases}}\)
Thay x = 4x -1 = 0
x = \(\frac{1}{4}\)
- x = 1 \(\Leftrightarrow\) 4x - 1 = 1
x = \(\frac{1}{2}\)
- x = -1 \(\Leftrightarrow\) 4x -1 = -1
x = 0
Vậy x = \(\frac{1}{2}\) hoặc x = 0
\(3^{-1}.3^x+9.3^x=28\\ \Leftrightarrow3^x\left(\dfrac{1}{3}+9\right)=28\\ \Leftrightarrow3^x.\dfrac{28}{3}=28\\ \Leftrightarrow3^x=3\\ \Leftrightarrow x=1\)