K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2017

( 2x + 1 )2 = 1

Mà 12 = 1

=> 2x + 1 = 1

=> 2x = 1 - 1

=> 2x = 0

=> x = 0 ÷ 2

=> x = 0

Vậy x = 0

P/s: bài này lớp 6 nha bạn

17 tháng 8 2017

(2.x)=1+1^2

(2.x)=3

x=3-2

x=1

mình mới lớp 6 cũng thử làm xem có đúng không

............................. Đấng Ed bảo ko chắc cho lắm nên sai thì sr nhé -,- 

\(a)\)\(\left|x-1\right|+\left|x-2\right|+...+\left|x-8\right|=22\)

+) Với \(x\ge8\) ta có : 

\(x-1+x-2+...+x-8=22\)

\(\Leftrightarrow\)\(8x-36=22\)

\(\Leftrightarrow\)\(x=\frac{29}{4}\)( không thỏa mãn ) 

+) Với \(x< 1\) ta có : 

\(1-x+2-x+...+8-x=22\)

\(\Leftrightarrow\)\(36-8x=22\)

\(\Leftrightarrow\)\(x=\frac{7}{4}\) ( không thỏa mãn ) 

Vậy không có x thỏa mãn đề bài 

\(b)\)\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=2500\)

+) Với \(x\ge100\) ta có : 

\(x-1+x-2+x-3+...+x-100=2500\)

\(\Leftrightarrow\)\(100x-5050=2500\)

\(\Leftrightarrow\)\(x=\frac{151}{2}\) ( không thỏa mãn ) 

+) Với \(x< 1\) ta có : 

\(1-x+2-x+3-x+...+100-x=2500\)

\(\Leftrightarrow\)\(5050-100x=2500\)

\(\Leftrightarrow\)\(x=\frac{51}{2}\) ( không thỏa mãn ) 

Vậy không có x thỏa mãn đề bài 

Bài 2 : 

+) Với \(x\ge-1\) ta có : 

\(x+1+x+2+...+x+100=605x\)

\(\Leftrightarrow\)\(100x+5050=605x\)

\(\Leftrightarrow\)\(x=10\) ( thỏa mãn ) 

+) Với \(x< -100\) ta có : 

\(-x-1-x-2-...-x-100=605x\)

\(\Leftrightarrow\)\(-100x-5050=605x\)

\(\Leftrightarrow\)\(x=\frac{-1010}{141}\) ( không thỏa mãn ) 

Vậy \(x=10\)

~ Đấng phắn ~ 

9 tháng 10 2019

1.a) có: \(|x-\frac{3}{2}|,|x+1|,\left|x-2\right|\ge0\Rightarrow4x\ge0\Rightarrow x\ge0\)

\(x\ge0\Rightarrow x-\frac{3}{2}\ge\frac{-3}{2}\Rightarrow\left|x-\frac{3}{2}\right|\ge\left|\frac{-3}{2}\right|=\frac{3}{2}\Rightarrow\left|x-\frac{3}{2}\right|=x-\frac{3}{2}\)

cmtt: \(|x-2|=x-2\)

\(\Rightarrow3x-\frac{3}{2}+1-2=4x\)

\(\Rightarrow3x-\frac{5}{2}=4x\)

\(\Rightarrow x=\frac{-5}{2}\left(ko,t/m\right)\)

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

11 tháng 9 2019

B1: Đk: 5x ≥ 0 => x ≥ 0

Vì |x + 1| ≥ 0 => |x + 1| = x + 1

     |x + 2| ≥ 0 => |x + 2| = x + 2

     |x + 3| ≥ 0 => |x + 3| = x + 3

     |x + 4| ≥ 0 => |x + 4| = x + 4

=> |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

 => x + 1 + x + 2 + x + 3 + x + 4 = 5x

=> 4x + 10 = 5x

=> x = 10

B2: Ta có: |x - 2018| = |2018 - x|

=> A=|x + 2000| + |2018 - x| ≥ |x + 2000 + 2018 - x| = |4018| = 4018

Dấu " = " xảy ra <=> (x + 2000)(x - 2018) ≥ 0

Th1: \(\hept{\begin{cases}x+2000\ge0\\x-2018\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge-2018\\x\le2018\end{cases}}\Rightarrow-2018\le x\le2018\)

Th2: \(\hept{\begin{cases}x+2000\le0\\x-2018\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le-2018\\x\ge2018\end{cases}}\)(vô lý)

Vậy GTNN của A = 4018 khi -2018 ≤ x ≤ 2018

B3:

a, Vì |x + 1| ≥ 0 ; |2y - 4| ≥ 0

=> |x + 1| + |2y - 4| ≥ 0

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+1=0\\2y-4=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=2\end{cases}}\)

Vậy...

b, Vì |x - y + 1| ≥ 0 ; (y - 3)2 ≥ 0

 => |x - y + 1| + (y - 3)2 ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-y=-1\\y=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-3=-1\\y=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

Vậy...

c, Vì |x + y| ≥ 0 ; |x - z| ≥ 0  ; |2x - 1| ≥ 0 

=> |x + y| + |x - z| + |2x - 1| ≥ 0 

Dấu " = " xảy ra <=> \(\hept{\begin{cases}x+y=0\\x-z=0\\2x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=0\\x=z\\x=\frac{1}{2}\end{cases}\Leftrightarrow}}\hept{\begin{cases}\frac{1}{2}+y=0\\x=z=\frac{1}{2}\end{cases}\Leftrightarrow}\hept{\begin{cases}y=\frac{-1}{2}\\x=z=\frac{1}{2}\end{cases}}\)

22 tháng 12 2019

coi lại mới thấy trình bày ngờ-u :)) 

B1: Đk: 5x ≥ 0 => x ≥ 0

=> x + 1 > 0 => |x + 1| = x + 1

=> x + 2 > 0 => |x + 2| = x + 2 

=> x + 3 > 0 => |x + 3| = x + 3 

=> x + 4 > 0 => |x + 4| = x + 4 

Ta có:  |x + 1| + |x + 2| + |x + 3| + |x + 4| = 5x

=> .... Làm tiếp như dưới

Bài 2: 

a: =>x=0 hoặc x=-3

b: =>x-2=0 hoặc 5-x=0

=>x=2 hoặc x=5

c: =>x-1=0

hay x=1