Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt |a| + |b| ≥ |a + b| ta có :
A = |2x - 2| + |2x - 2013| = |2 - 2x| + |2x - 2013| ≥ |2 - 2x + 2x - 2013| = |- 2011| = 2011
Dấu "=" xảy ra <=> (2 - 2x)(2x - 2013) ≥ 0 => 2013/2 ≥ x ≥ 1
Vậy GTNN của A là 2011 <=> 2013/2 ≥ x ≥ 1
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3x + 3x+2 = 270
3x . 1 + 3x . 32 = 270
3x . ( 1 + 32 ) = 270
3x . 10 = 270
3x = 270 : 10
3x = 27
3x = 33
=> x = 3
+) Với x = 2 ta có: f(2) + 2f(0) = 2.3
f(2) + 2f(0) = 6 (1)
+) Với x = 0 ta có: f(0) + 2f(2) = 0.3
f(0) + 2f(2) = 0
=> 2f(0) + 4f(2) = 0 (2)
Lấy (1) trừ (2) ta có:
-3f(2) = 6
=> f(2) = -2
Ta có: lx-1l + l4-xl = 3 <=> lx-1l + lx-4l = 3
TH1: Nếu x < 1, ta có: TH2: Nếu 1 < x < 4, ta có: TH3: Nếu x > 4, ta có: 1 - x + 4 - x = 3 x - 1 + 4 - x = 3 x - 1 + x - 4 = 3 <=>5 - 2x = 3 <=> 3 =3 (TM) <=> 2x - 5 = 3
<=> 2x = 5 - 3 = 2 <=> x = 1;2;3;4 <=> 2x = 3 + 5 = 8 <=> x = 1 (TM) < => x = 4(TM) Vậy x = 1;2;3;4.
Vì \(\hept{\begin{cases}\left(x+2y-4\right)^2\ge0\\\left(2x-3y-1\right)^2\ge0\end{cases}}\)=> \(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2\ge0\)
\(\left(x+2y-4\right)^2+\left(2x-3y-1\right)^2=0\) <=> \(\left(x+2y-4\right)^2=\left(2x-3y-1\right)^2=0\)
<=>\(x+2y-4=2x-3y-1=0\)
\(x+2y-4=0\Leftrightarrow x+2y=4\Leftrightarrow2\left(x+2y\right)=8\Leftrightarrow2x+4y=8\)
\(2x-3y-1=0\Leftrightarrow2x-3y=1\)
=>\(\left(2x-3y\right)-\left(2x+4y\right)=1-8\)
=>\(2x-3y-2x-4y=-7\)
=>\(-7y=-7\)=>\(y=1\)=>\(x=2\)
Vậy .............................
Trừ biểu thức 2 cho biểu thức thứ 3 ta được:
[g(x)+h(x)]-[f(x)+g(x)] = 2x2-2x+1-x2+4x-2
<=> h(x)-f(x) = x2+2x-1
Lại có: h(x)+f(x) = x2+2x+1
=> 2.f(x) = x2+2x+1-x2-2x+1 = 2
=> f(x) = 1
Đáp số: f(x) = 1
/x/=-3
không có giá trĩ nào thảo mãn vì/x/ lớn hơn bằng o với mọi x
x thuộc tập hợp rỗng