Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{X\left(X+2\right)}\)
\(\frac{1}{2}.\left(\frac{1}{1.3}+...+\frac{1}{X\left(X+2\right)}\right)\)= \(\frac{16}{34}\)
\(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+2}\right)\)
=15
TA CÓ : 1/1.3 + 1/3.5 + 1/5.7 +... + 1/X(X+2) = 8/17
=> 2/1.3 + 2/3.5 + 2/5.7 +... + 2/X(X+2) = 8/17 . 2 = 16/17
<=> 1 - 1/X+2 = 16/17
X+2/X+2 - 1/X+2 = 16/17
X+2 -1/X+2 = 16/17
=> X+2 -1 =16 VÀ X+2 = 17
=> X = 15
\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)
\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)
\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)
\(x=\frac{4}{5}+\frac{1}{5}\)
\(x=1\)
nhân 2 vào 2 vế rồi bạn biến đổi ra( mình lười làm ắ)
tìm được x=50 ắ
\(\frac{x-2}{3}+\frac{x-2}{3.5}+\frac{x-2}{5.7}+...+\frac{x-2}{97.99}=\frac{-49}{99}\)
<=>\(\left(x-2\right)\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{97.99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{1}{2}\cdot\left(1-\frac{1}{99}\right)=-\frac{49}{99}\)
<=>\(\left(x-2\right)\cdot\frac{49}{99}=-\frac{49}{99}\)
<=>x-2=-1
<=>x=1
A\(A=\frac{1}{1.3}+..+\frac{1}{x\left(x+1\right)}\)
\(2A=\frac{1}{1}-\frac{1}{\left(x+1\right)}\)
\(A=\frac{x}{2.\left(x+1\right)}=\frac{8}{17}=\frac{16}{2.17}\)
X=16
Hướng dẫn:
\(M=\frac{1^2}{1.3}+\frac{2^2}{3.5}+\frac{3^2}{5.7}+...+\frac{99^2}{197.199}\)
\(\Rightarrow4M=\frac{1.4}{1.3}+\frac{4.4}{3.5}+\frac{9.4}{5.7}+...+\frac{9801.4}{197.199}\)
\(\Rightarrow4M=\frac{2.2}{1.3}+\frac{4.4}{3.5}+\frac{6.6}{5.7}+...+\frac{198.198}{197.199}\)
Đến đoạn này bạn đưa về dạng tổng quát nhé:
\(\frac{n^2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{4}+\frac{1}{8\left(2n-1\right)}-\frac{1}{8\left(2n+1\right)}\) (Tự phân tích)
Sau đó thay vào A. Kết quả tìm được là \(A=\frac{1}{8}-\frac{1}{8.2013}+\frac{1006}{4}=251,6249379\)