Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng định lí Bê-du ta có:
R(x)=(-1)2009+(-1)2008+...+(-1)2+(-1)+2010=2009
xin lỗi tớ không biết kết quả tớ tính được có đúng không nhưng cách làm hình như đúng rồi đấy
\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)
\(\Leftrightarrow\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\Leftrightarrow\left(x-2010\right)\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\right)=0\Leftrightarrow x=2010\)
\(\Leftrightarrow\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}-1\)
=>x-2010=0
hay x=2010
lấy mỗi phân số trừ đi 1 ta đc (x-1)/2009 -1 + (x-2)/2008 -1 = (x-3)/2007-1 + (x-4)/2006 -1
suy ra (x-2010)/2009 + (x-2010)/2008 - (x-2010)/2007 - (x-2010)/2006 = 0
đặt (x-2010) làm nhân tử chung ta được
(x-2010).(1/2009 + 1/2008 - 1/2007 - 1/2006 ) = 0
=> x-2010 = 0
=> x = 2010
Giải:
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\dfrac{2-x}{2007}-1+2=\dfrac{1-x}{2008}-\dfrac{x}{2009}+2\)
\(\Leftrightarrow\dfrac{2-x}{2007}+1=\dfrac{1-x}{2008}+1-\dfrac{x}{2009}+1\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}-\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}=0\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
Vì \(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\ne0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
Vậy ...
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\)
\(\Leftrightarrow\left(\dfrac{2-x}{2007}+1\right)-\left(1+1\right)=\left(\dfrac{1-x}{2008}+1\right)-\left(\dfrac{x}{2009}+1\right)\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}-\dfrac{x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2-x+2007}{2007}=\dfrac{1-x+2008}{2008}+\dfrac{-x+2009}{2009}\)
\(\Leftrightarrow\dfrac{2009-x}{2007}=\dfrac{2009-x}{2008}+\dfrac{2009-x}{2009}\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}-\dfrac{1}{2009}\right)=0\)
\(\Leftrightarrow2009-x=0\)
\(\Leftrightarrow x=2009\)
\(\dfrac{2-x}{2007}\) - 1 = \(\dfrac{1-x}{2008}\) - \(\dfrac{x}{2009}\)
<=> \(\dfrac{2-x}{2009}\) +1 -1 +1 = \(\dfrac{1-x}{2008}\) +1 - \(\dfrac{x}{2009}\) +1
<=> \(\dfrac{2-x+2007}{2007}\) = \(\dfrac{1-x+2008}{2008}\) + \(\dfrac{-x+2009}{2009}\)
<=> \(\dfrac{2009-x}{2007}\) = \(\dfrac{2009-x}{2008}\) + \(\dfrac{2009-x}{2009}\)
<=> (2009-x)(\(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) - \(\dfrac{1}{2009}\) ) = 0
<=> 2009 -x = 0
hoặc: \(\dfrac{1}{2007}\) - \(\dfrac{1}{2008}\) -\(\dfrac{1}{2009}\) = 0
Vì \(\dfrac{1}{2007}\) \(\ne\) \(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\)
=> \(\dfrac{1}{2007}\) - (\(\dfrac{1}{2008}\) + \(\dfrac{1}{2009}\) ) \(\ne\) 0
=> 2009 -x =0
<=> x =2009
\(\dfrac{2-x}{2007}-1=\dfrac{1-x}{2008}-\dfrac{x}{2009}\\ \Leftrightarrow\dfrac{2009-x}{2007}-2=\dfrac{2009-x}{2008}-\dfrac{2009-x}{2009}-2\)
\(\Leftrightarrow\left(2009-x\right)\left(\dfrac{1}{2007}-\dfrac{1}{2008}+\dfrac{1}{2009}\right)=0\)
\(\Rightarrow2009-x=0\Leftrightarrow x=2009\)
Ta có: \(\frac{2-x}{2007}-1=\frac{1-x}{2008}-\frac{x}{2009}\)
=>\(\frac{2-x}{2007}=\frac{1-x}{2008}-\frac{x}{2009}+1\)
=>\(\frac{2-x}{2007}=\left(\frac{1-x}{2008}+1\right)-\frac{x}{2009}+1-1\)
=>\(\frac{2-x}{2007}+1=\frac{1-x+2008}{2008}+\left(1-\frac{x}{2009}\right)\)
=>\(\frac{2-x+2007}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
=>\(\frac{2009-x}{2007}=\frac{2009-x}{2008}+\frac{2009-x}{2009}\)
=>\(\frac{2009-x}{2007}-\frac{2009-x}{2008}-\frac{2009-x}{2009}=0\)
=>\(\left(2009-x\right).\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\ne0\)
=>2009-x=-
=>x=2009
Vậy tập nghiệm của phương trình S=2009
Lời giải:
a)
PT \(\Leftrightarrow \frac{(x+2)^3}{8}-\frac{x^3+8}{2}=0\)
\(\Leftrightarrow (x+2)^3-4(x^3+8)=0\)
\(\Leftrightarrow (x+2)^3-4(x+2)(x^2-2x+4)=0\)
\(\Leftrightarrow (x+2)[(x+2)^2-4(x^2-2x+4)]=0\)
\(\Leftrightarrow (x+2)(-3x^2+12x-12)=0\)
\(\Leftrightarrow (x+2)(x^2-4x+4)=0\Leftrightarrow (x+2)(x-2)^2=0\Rightarrow x=\pm 2\)
b) Bạn kiểm tra lại xem có sai đề không?
\(pt\Leftrightarrow\frac{x}{2009}+\frac{1}{2009}+\frac{x}{2008}+\frac{2}{2008}=\frac{x}{3}+\frac{2007}{3}+\frac{x}{4}+\frac{2006}{4}\Leftrightarrow\frac{x}{2009}+\frac{x}{2008}-\frac{x}{3}-\frac{x}{4}=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}\right)=\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}\Leftrightarrow x=\frac{\frac{2006}{4}+\frac{2007}{3}-\frac{1}{1008}-\frac{1}{2009}}{\frac{1}{2009}+\frac{1}{2008}-\frac{1}{3}-\frac{1}{4}}=-2010\)
ak thôi, mình giải đc rồi
(2-x)/2007-1=(1-x)/2008 -x/2009
<=>((2-x)/2007 +1)-2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)/2007 -2=(2009-x)/2008 - (2009-x)/2009
<=>(2009-x)(1/2007-1/2008+1/2009)=2
=>x