K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2021

`-10x(2-x)-5x(x+2)=5x(x+3)`

`<=> -20x + 10x^2 - 5x^2 - 10x = 5x^2 +15x`

`<=> 5x^2 - 30x = 5x^2 + 15x`

`<=> -30x = 15x`

`<=> -45x = 0`

`<=> x = 0`

Vậy `S = {0}`

26 tháng 7 2021

\(-10x\left(2-x\right)-5x\left(x+2\right)=5x\left(x+3\right)\)

\(\text{⇔}10x\left(x-2\right)+5x\left(x-2\right)=-5x\left(x-3\right)\)

\(\text{⇔}\left(x-2\right)\left(10x+5x\right)=-5x\left(x-3\right)\)

\(\text{⇔}15x\left(x-2\right)=-5x^2+15\)

\(\text{⇔}15x^2-30=-5x^2+15\)

\(\text{⇔}15x^2+5x^2=30+15\)

\(\text{⇔}20x^2=45\)

\(\text{⇔}x=\sqrt{\dfrac{45}{20}}=\dfrac{3}{2}\)

Vậy: \(x=\dfrac{3}{2}\)

\(x^4+5x^3+10x^2+5x-21=0\)

\(\Leftrightarrow x^4-x^3+6x^3-6x^2+16x^2-16x+21x-21=0\)

\(\Leftrightarrow x^3\left(x-1\right)+6x^2\left(x-1\right)+16x\left(x-1\right)+21\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+6x^2+16x+21\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^3+3x^2+3x^2+9x+21\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+3\right)+3x\left(x+3\right)+9\left(x+3\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)\left(x^2+3x+9\right)=0\)

<=> x-1=0 <=> x=1

       x+3=0 <=> x=-3

       \(x^2+3x+9=x^2+2.\frac{3}{2}x+\frac{9}{4}+\frac{27}{4}=\left(x+\frac{3}{2}\right)^2+\frac{27}{4}>0\)

vậy nghiệm của pt là x=1; x=-3

18 tháng 9 2021

b. 6x(x - 5) - x(6x + 3)

= x(6x - 30) - x(6x + 3)

= x(6x - 30 - 6x - 3)

= x(-33)

= -33x

19 tháng 9 2021

\(1,\\ a,=-35x^5y^4z\\ b,=6x^2-30x-6x^2-3x=-33x\\ c,=x^3-9x^2-2x^2+18x-x+9=x^3-11x^2+17x+9\\ 2,\\ A\left(x\right)+B\left(x\right)=10-2x+4x^3-5x^2-10x^3-5x+6x^2-20\\ =-6x^3+x^2-7x-10\\ A\left(x\right)-B\left(x\right)=10-2x+4x^3-5x^2+10x^3+5x-6x^2+20\\ =14x^3-11x^2+3x+30\\ 3,\\ a,M\left(x\right)=5x+20=0\\ \Leftrightarrow x=-4\\ b,N\left(x\right)=100x^2-49=0\\ \Leftrightarrow\left(10x-7\right)\left(10x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{10}\\x=-\dfrac{7}{10}\end{matrix}\right.\\ c,P\left(x\right)=3x-15=0\\ \Leftrightarrow x=5\)

Bài 1;

a)\(5x^3yz.\left(-7x^2y^3\right)=-35.x^5y^4z\)

b)\(6x\left(x-5\right)-x\left(6x+3\right)=6x^2-30x-6x^2-3x=-33x\)

c) \(\left(x-9\right)\left(x^2-2x-1\right)=x^3-2x^2-x-9x^2+18x+9=x^3-11x^2+17x+9\)

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

13 tháng 11 2021

C