Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯC ( n+1,2n+3)
Suy ra n+1 \(⋮\)d ; 2n +3 \(⋮\)d
n +1\(⋮\)d \(\Rightarrow\)2 (n+1)\(⋮\)d
\(\Rightarrow\)2n +2 \(⋮\)d
Do đó : (2n + 3) - (2n +2 )\(⋮\)d
2n+3 - 2n -2 \(⋮\)d
1\(⋮\)d
\(\Rightarrow\)d\(\in\)Ư (1)={1}
\(\Rightarrow\)ƯC (n +1 , 2n +3 ) = {1}
\(\Rightarrow\)ƯCLN (n +1, 2n +3 ) =1
Bài sau tương tự nha bn.Chúc bn học tốt !!!
Gọi d \(\in\) ƯC ( 2n - 1 , 9n + 4 ) \(\Rightarrow\) 2( 9n+4 ) - 9( 2n-1 ) \(⋮\) d \(\Rightarrow\) 17\(⋮\) cho d \(\Rightarrow\) d \(\in\) { 1 ; 17 }
Ta có : 2n - 1\(⋮\) cho 17 \(\Leftrightarrow\) 2n - 18 \(⋮\) 17 \(\Leftrightarrow\) 2( n - 9 ) \(⋮\) 17 \(\Leftrightarrow\) n - 9 \(⋮\) cho 17
\(\Leftrightarrow\) n = 17k + 9 ( k \(\in\) N )
Nếu n = 17k + 9 thì 2n - 1 \(⋮\) 17 và 9n + 4 = 9 . ( 17k + 9 ) + 4 = B 17 + 85 \(⋮\) 17
Do đó ( 2n - 1 , 9n + 4 ) = 17 .
Nếu n \(\ne\) 17k + 9 thì 2n - 1 \(⋮̸\) cho 17 , do đó ( 2n - 1 , 9n + 4 ) = 1 .
Online Math chọn đi .
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
Gọi d là ƯCLN(2n+3;3n+4)
Hay( 2n+3-3n+4) chia hết cho d
Hay3(2n+3)-2(3n+4) chia hết cho d
Hay 6n+9-6n+8 chia hết cho d
Hay d=1
Nên:ƯCLN(2n+3;3n+4)=1
k mình nha
Gọi a=ƯCLN(2n+3,3n+4), a\(\in\)N*.
=> 2n+3 \(⋮\)a
và 3n+4 \(⋮\)a.
=> 6n+9\(⋮\)a
và 6n+8\(⋮\)a
=>(6n+9) - (6n+8) \(⋮\)a
=> 1 \(⋮\)a
=> a = 1
vậy ƯCLN(2n+3;3n+4)=1.
Gọi d ∈ ƯCLN (2n + 3; 3n + 4) nên ta có :
2n + 3 ⋮ d và 3n + 4 ⋮ d
=> 3(2n + 3) ⋮ d và 2(3n + 4) ⋮ d
=> 6n + 9 ⋮ d và 6n + 8 ⋮ d
=> (6n + 9) - (6n + 8) ⋮ d
=> 1 ⋮ d => d = 1
Vậy ƯCLN (2n + 3; 3n + 4) = 1
Gọi \(d=ƯCLN\left(2n+3,n+4\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2n+3⋮d\\n+4⋮d\end{matrix}\right.\Leftrightarrow2\left(n+4\right)-2n-3⋮d\\ \Leftrightarrow5⋮d\)
Mà \(d\) lớn nhất nên \(d=5\)
Vậy \(ƯCLN\left(2n+3,n+4\right)=5\)