K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Mình chưa nghĩ ra.

Gọi d \(\in\) ƯC ( 2n - 1 , 9n + 4 ) \(\Rightarrow\) 2( 9n+4 ) - 9( 2n-1 ) \(⋮\) d \(\Rightarrow\) 17\(⋮\) cho d \(\Rightarrow\) d \(\in\) { 1 ; 17 }

Ta có : 2n - 1\(⋮\) cho 17 \(\Leftrightarrow\) 2n - 18 \(⋮\) 17 \(\Leftrightarrow\) 2( n - 9 ) \(⋮\) 17 \(\Leftrightarrow\) n - 9 \(⋮\) cho 17

                                        \(\Leftrightarrow\) n = 17k + 9 ( k \(\in\) N )

Nếu n = 17k + 9 thì 2n - 1 \(⋮\) 17 và 9n + 4 = 9 . ( 17k + 9 ) + 4 = B 17 + 85 \(⋮\) 17 

Do đó ( 2n - 1 , 9n + 4 ) = 17 .

Nếu n \(\ne\) 17k + 9 thì 2n - 1 \(⋮̸\) cho 17 , do đó ( 2n - 1 , 9n + 4 ) = 1 .

Online Math chọn đi .

9 tháng 11 2015

1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17

2)  (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31

5 tháng 3 2020

Gọi d là ƯCLN(2n - 1; 9n + 4) Nên ta có :
2n - 1 ⋮ d và 9n + 4 ⋮ d
9(2n - 1) ⋮ d và 2(9n + 4) ⋮ d 

18n - 9 ⋮ d và 18n + 8 ⋮ d

(18n + 8) - (18n - 9) ⋮ d

17 ⋮ d . Mà d lớn nhất => d = 17

Vậy ƯCLN(2n - 1; 9n + 4)  = 17 

5 tháng 3 2020

Gọi ƯCLN(2n-2; 9n+4) = d 

=> 2n-2 \(⋮\)d;         9n+4 \(⋮\)d

=> (2n-2) -( 9n+4) \(⋮\)d

=> 9( 2n-2) - 2(9n+4) \(⋮\)d

=> ( 18n -18 ) - ( 18n+8) \(⋮\)d

=> 18n -18 - 18n - 8 \(⋮\)d

=> 26 \(⋮\)d

=> d \(\in\){1; 26; 13; 2}

Sau b thay d bằng từng gt 1 thầy 1 thỏa mãn hay s ấy

Vậy...

K chắc nhaaaaaaaaaaaaaaaa

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 1:

a. Gọi d là ƯCLN(n+2, n+3). Khi đó:

$n+2\vdots d; n+3\vdots d$

$\Rightarrow (n+3)-(n+2)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(n+2, n+3)=1$ nên hai số này nguyên tố cùng nhau.

b.

Gọi $d=ƯCLN(2n+1, 9n+4)$

$\Rightarrow 2n+1\vdots d; 9n+4\vdots d$

$\Rightarrow 9(2n+1)-2(9n+4)\vdots d$

Hay $1\vdots d$

$\Rightarrow d=1$. Vậy $ƯCLN(2n+1, 9n+4)=1$ nên hai số này nguyên tố cùng nhau.

AH
Akai Haruma
Giáo viên
9 tháng 1 2023

Bài 2:

a. Vì ƯCLN(a,b)=24 nên đặt $a=24x, b=24y$ với $x,y$ là 2 số nguyên tố cùng nhau.

Khi đó: $a+b=24x+24y=192$

$\Rightarrow 24(x+y)=192$

$\Rightarrow x+y=8$

Vì $(x,y)$ nguyên tố cùng nhau nên $(x,y)=(1,7), (3,5), (5,3), (1,7)$

$\Rightarrow (a,b)=(24,168), (72, 120), (120,72), (168,24)$