Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
Vì UCLN (a,b) = 1 nên tất cả các câu còn lại đều bằng 1 chắc chắn 100000000...%
CHÚC BẠN HỌC MÔN TOÁN CŨNG NHƯ TẤT CẢ CÁC MÔN KHÁC THẬT TỐT NHA, NẾU BẠN LÀ NGƯỜI YÊU THICK MÔN TOÁN NHƯ MÌNH THÌ KB NHA
UCLN ( n+1) (n+2) =1
vì 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau nên
Ước chung lớn nhất của (n+1) (n+2) = 1
Ta có: \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
Gọi ƯCLN(\(\dfrac{n\left(n+1\right)}{2}\),\(2n+1\))=d
Ta có: \(\dfrac{n\left(n+1\right)}{2}⋮d\)\(\Leftrightarrow\dfrac{4n\left(n+1\right)}{2}⋮d\Leftrightarrow2n\left(n+1\right)⋮d\Leftrightarrow2n^2+2n⋮d\)
Lại có: \(\left(2n+1\right)⋮d\Leftrightarrow n\left(2n+1\right)⋮d\Leftrightarrow2n^2+n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)\(\Leftrightarrow n⋮d\)
\(\Leftrightarrow2n⋮d\)
Mà \(\left(2n+1\right)⋮d\)\(\Leftrightarrow1⋮d\)
=> Đpcm
Gọi ƯCLN(2n+2; 2n) là d. Ta có:
2n+2 chia hết cho d
2n chia hết cho d
=> 2n+2-2n chia hết cho d
=> 2 chia hết cho d
Có 2n chẵn => 2n chia hết cho 2
Mà 2 chia hết cho 2
=> 2n + 2 chia hết cho 2
=> ƯCLN(2n; 2n+2) = 2