K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2017

Gọi d là ƯCLN (2n+1,2n+2)

Ta có 2n+1 Chia hết cho d

          2n+2 chia hết cho d

Suy ra : 2n+2 - (2n+1) chia hết cho d

Hay 1 chia hết cho d

Suy ra : d thuộc tập hợp các ước của 1 = 1 (có ngoặc nhọn )

Vậy : d = 1 hay ƯCLN (2n+1 ,2n+2 )= 1 

2 tháng 12 2017

Đặt UCLN(2n+1;2n+3)=d

=> 2n+1 chia hết cho d

    2n+3 chia hết cho d

=> 2n+3-2n-1 chia hết cho d

=>1 chia hết cho d => d=1

2 tháng 12 2017

kết quả là 1

1 k nha

1 tháng 1 2018

Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )

=> 2n+1 và 6n+5 đều chia hết cho d

=> 3.(2n+1) và 6n+5 đều chia hết cho d

=> 6n+3 và 6n+5 đều chia hết cho d

=> 6n+5-(6n+3) chia hết cho d

=> 2 chia hết cho d

Mà 2n+1 lẻ nên d lẻ

=> d=1

=> ƯCLN (2n+1;6n+5) = 1

=> ĐPCM

k mk nha

1 tháng 1 2018

Gọi UCLN(2n+1;6n+5)=d

Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d

       6n+5 chia hết cho d

\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d

\(\Rightarrow2\) chia hết cho d

\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2

\(\Rightarrowđpcm\)

4 tháng 12 2019

Gọi d là ucln của 4n+7 và 2n+4

Ta có 4n+7 chia hết cho d

         2n+4 chia hết cho d

=> 4n+7 chia hết cho d

      2(2n+4) chia hết cho d

=> 4n+7 chia hết cho d

      4n+8 chia hết cho d

=> (4n+8)-(4n+7) chia hết cho d

=> 1 chia hết cho d

=> d thược u(1)

=> d=1

Vậy ucln của 4n+7 và 2n+4 là 1

4 tháng 12 2019

Gọi \(d\inƯC\left(4n+7,2n+4\right)\)  vs \(d\inℕ^∗\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2n+4⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\2\left(2n+4\right)⋮d\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}4n+7⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow4n+8-\left(4n+7\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\RightarrowƯCLN\left(4n+7,2n+4\right)=1\)

DD
24 tháng 5 2021

\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)

\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).

20 tháng 11 2017

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

6 tháng 3 2020

Ta có 2n+1=2(n-3)+7

Để 2n+1 chia hết cho n-3 thì 2(n-3)+7 chia hết cho n-3

Vì 2(n-3) chia hết cho n-3

=> 7 chia hết cho n-3

n nguyên => n-3 nguyên => n-3 thuộc Ư (7)={-7;-1;1;7}
Nếu n-3=-7 => n=-4 

Nếu n-3=-1 => n=2

Nếu n-3=1 => n=4

Nếu n-3=7 => n=10

6 tháng 3 2020

Ta có : \(2n+1⋮n-3\)

\(=>2n-6+7⋮n-3\)

\(Do:2n-6⋮n-3\)

\(=>7⋮n-3\)

\(=>n-3\inƯ\left(7\right)\)

Nên ta có bảng sau : 

n-371-7-1
n104-42

Vậy ...

17 tháng 6 2016

1./ Do 2n + 1 là số lẻ nên n2 - 2n + 4 chia hết cho 2n+1 thì 4(n2 - 2n + 4) cũng chia hết cho 2n + 1 (nhân số 4 chẵn ko tăng thêm ước cho 2n + 1)

mà: B = 4(n2 - 2n + 4) = 4n2 + 4n + 1 - 12n - 6 + 21 = (2n + 1)2 - 6(2n+1) + 21 = (2n + 1)(2n + 1 - 6) +21 = (2n + 1)(2n - 5) + 21

=> B chia hết cho 2n + 1 <=> 21 chia hết cho 2n + 1.

=> 2n + 1 thuộc U (21) = {-21;-7;-3;-1;1;3;7;21}

Khi đó n = -11; -4 ; -2; -1 ; 0 ; 1; 3 ; 10.

2./ C = 2n2 + 8n + 11 = 2n2 +4n + 4n + 8 + 3 = 2n(n + 2) + 4(n + 2) + 3 = (n + 2)(2n + 4) + 3

để 2n2 + 8n + 11 chia hết cho n + 2 thì n + 2 phải là U(3) = {-3; -1; 1; 3)

Khi đó n = -5 ; -3 ; -1 ; 1

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)

10 tháng 8 2016

Quái, sao có 2 giá trị chưa bik z!!!! Chắc ghi sai đề rùi!!!!!!

10 tháng 8 2016

Ơ, mình kiểm tra lại thấy vẫn đúng mà !