K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2017

S=1+2+3+...+2017

Tổng của dãy : 2017 x \(\frac{2017+1}{2}\)=2035153

Số chính phương không bao giờ có tận cùng là 2,3,7,8

Mà \(\sqrt{2035153}=1426,587887....\)

Nên S không phải số chính phương

17 tháng 12 2017

Ta thấy S có các số hạng cách đều 2 đơn vị
=> S có: (2017 - 1) : 2 +1 = 1009 ( số hạng)
=> S = (2017 + 1) x 1009 : 2 = (2018 : 2) x 1009= 1009 x 1009 = 1009
Vì  1009 là số nguyên => 10092 là số chính phương => S là số chính phương(điều phải chứng minh)

30 tháng 1 2017

chịu thôi nhưng chọn mk nha bn

27 tháng 4 2017

Số số hạng của S là :

(2017-1):1+1=2017(số hạng)

Tổng của S là : (2017+1).2017:2 = 1018081

Vì 1018081=1009 nên S là số chính phương. Chúc bạn học tốt nhé

3 tháng 2 2022

Answer:

a. \(S=1+3+5+...+2009+2011\)

Số các số hạng của tổng: \(\left(2011-1\right):2+1=1006\) số hạng

Có \(S=\frac{\left(2011+1\right).1006}{2}=1012036\)

Mà \(1012036=1006^2\)

Vậy S là một số chính phương.

b. \(1012036=2^2.503^2\)

Vậy ước nguyên tố của \(S=\left\{2;503\right\}\)

DD
1 tháng 8 2021

a) b) \(S=1+3+5+...+2009+2011\)

Tổng trên là tổng các số hạng cách đều, số hạng sau hơn số hạng trước \(2\)đơn vị. 

Số số hạng của tổng trên là: \(\left(2011-1\right)\div2+1=1006\)

Giá trị của tổng trên là: \(S=\left(2011+1\right)\times1006\div2=2012\times1006\div2=1006^2=1012036\)

c) Phân tích thành tích cách thừa số nguyên tố: \(1006=2.503\)

Nên cách ước nguyên tố của \(S\)là \(2,503\).

9 tháng 3 2015

a) theo công thức tính tổng: S=1+2+3...+n=(n.(n+1))/2

=>S=1+3+5...+2011=1+2+3+...+2010+2011-(2+4+6...+2010)

      =1+2+3+...+2010+2011-2(1+2+3+...+1005)

      =2011.2012/2 -2(1005.1006/2) =1012036

1012036 có tận cùng =6 và 1012036=2^2.503^2 (số mũ chẳn) , 1012036=1006^2

=> 1012036 là số chính phương.

b) 1012036=2^2.503^2 => ước nguyên tố của S= {2;503}

20 tháng 12 2021

a) tính ss hạng rồi nhóm 3 số hạng vào 1 nhóm 

vì tổng của 1 nhóm chia hết cho 13

=>s chia hết cho 13

b)n=1011

c) cmr s :4 dư 3

từ đó 

=>s không là số chính phương vì s:4 dư 3