K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2021

Thay điểm A vào đường thẳng d1 và d2 ta thấy A đều không thuộc hai đường thẳng đó

\(\Rightarrow\) d1, d2 là phương trình của các đường cao kẻ từ đỉnh B và đỉnh C

Giả sử d1 là đường cao kẻ từ B

Vì \(d_1\perp AC\Rightarrow\) phương trình đường thẳng AC có dạng:

\(x-y+m=0\)

Vì \(A\left(2;2\right)\in AC\Rightarrow2-2+m=0\Rightarrow m=0\)

\(\Rightarrow x-y=0\left(AC\right)\)

\(\Rightarrow\) C có tọa độ là nghiệm của hệ \(\left\{{}\begin{matrix}x-y=0\left(AC\right)\\9x-3y+4=0\left(d_2\right)\end{matrix}\right.\Leftrightarrow x=y=-\dfrac{2}{3}\)

\(\Rightarrow C=\left(-\dfrac{2}{3};-\dfrac{2}{3}\right)\)

Tương tự ta tìm được \(B=\left(-1;3\right)\)

A:

loading...  loading...  loading...  loading...  loading...  loading...  

7 tháng 8 2016

vì A(2;2) k thuộc d1 và d2.nên gọi d1 là đg cao hạ từ đỉnh B.d2 là đg cao hạ từ C.suy ra n(AC)=(1;-1).n(AB)=(3;9) 

suy ra:AB:3x+9y-24=0     AC:x-y=0.sau đó lấy nghiệm B từ giao của AB và d1.C từ giao của AC và d2.viết bc đi qua b và c:11x+y+8=0

Tọa độ A là:

2x-3y+12=0 và 2x+3y=0

=>x=-3 và y=2

Tọa độ M, M là trung điểm của BC là M(x;-3x/2)

Phương trình BC sẽ là: 3x+2y+c=0

Thay x=4 và y=-1 vào BC, ta được:

3*4+2*(-1)+c=0

=>c+12-2=0

=>c=-10

=>BC: 3x+2y-10=0

=>B(x;5-1,5x); y=5-1,5x

B(x;5-1,5x); C(4;-1); M(x;-3x/2)

Theo đề, ta có: x=(4+x)/2 và -1,5x=(5x-1)/2

=>2x=x+4 và -3x=5x-1

=>x=4 và -8x=-1(loại)

=>Không có điểm B nào thỏa mãn

AH: x+y-1=0

=>VTPT là (1;1)

=>vecto BC=(1;1)

=>4-x=1 và 1-y=1

=>x=3 và y=0

=>B(3;0)

BK: 3x-y-7=0

=>VTPT là (3;-1)

=>vecto AC=(3;-1)

=>4-x=3 và 1-y=-1

=>x=1 và y=2

=>A(1;2)

NV
24 tháng 2 2021

Gọi \(M\left(x;y\right)\) là điểm cách đều \(d_1\) và \(d_2\)

\(\Rightarrow\dfrac{\left|2x-y+5\right|}{\sqrt{2^2+\left(-1\right)^2}}=\dfrac{\left|3x+6y-1\right|}{\sqrt{3^2+6^2}}\)

\(\Leftrightarrow\left|6x-3y+15\right|=\left|3x+6y-1\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-9y+16=0\\9x+3y+14=0\end{matrix}\right.\)

\(\Rightarrow\) Phương trình đường thẳng cần tìm có dạng:

\(\left[{}\begin{matrix}9\left(x+2\right)+3\left(y-0\right)=0\\3\left(x+2\right)-9\left(y-0\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+y+6=0\\x-3y+2=0\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn

AH
Akai Haruma
Giáo viên
11 tháng 3 2021

Lời giải:

Vì $A\not\in (d_1); (d_2)$ nên 2 đường trung tuyến này xuất phát từ đỉnh B và đỉnh C.

Gọi đây lần lượt là đường trung tuyến $BM,CN$

Gọi tọa độ $B(b, 2b-1), M(m, 2m-1), C(1,c), N(1,n)$

$M$ là trung điểm $AC$ nên: $m=\frac{3+1}{2}$ và $2m-1=\frac{1+c}{2}$

$\Rightarrow m=2; c=5$

Vậy tọa độ điểm C là $(1,5)$

$N$ là trung điểm $AB$ nên: $1=\frac{3+b}{2}$ 

$\Rightarrow b=-1$. Tọa độ $B(-1, -3)$