Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot...\cdot\frac{2004}{2005}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2004}{2\cdot3\cdot4\cdot...\cdot2005}\)
\(=\frac{1}{2005}\)
\(=\frac{-1}{2}.\frac{-2}{3}....\frac{-2003}{2004}.\frac{-2004}{2005}\)
\(=\frac{1}{2005}\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)
\(=\left(-\frac{1}{2}\right)\times\left(-\frac{2}{3}\right)\times...\times\left(-\frac{2003}{2004}\right)\times\left(-\frac{2004}{2005}\right)\)
\(=\frac{1}{2005}\)
***
\(\frac{4x}{2x-\frac{1}{5}}>0\)
\(\Leftrightarrow\begin{cases}4x>0\\2x-\frac{1}{5}>0\end{cases}\)
\(\Leftrightarrow\begin{cases}x>0\\x>\frac{1}{10}\end{cases}\)
\(\Leftrightarrow x>\frac{1}{10}\)
a,\(\left(\frac{1}{9}-1\right).\left(\frac{1}{10}-1\right)...\left(\frac{1}{2004}-1\right).\left(\frac{1}{2005}-1\right)\)
\(=\frac{-8}{9}.\frac{-9}{10}...\frac{-2003}{2004}.\frac{-2004}{2005}\)
\(=\frac{\left(-8\right).\left(-9\right)...\left(-2003\right).\left(-2004\right)}{9.10...2004.2005}\)
\(=\frac{-\left(8.9...2003.2004\right)}{9.10...2004.2005}\)
\(=\frac{-8}{2005}\)
b,Ta có: \(81^{10}-27^{13}-9^{21}\)
\(=\left(3^4\right)^{10}-\left(3^3\right)^{13}-\left(3^2\right)^{21}\)
\(=3^{40}-3^{39}-3^{42}\)
\(=3^{39}.3-3^{39}-3^{39}.3^3\)
\(=3^{39}.\left(3-1-3^3\right)\)
\(=3^2.3^{37}.\left(-25\right)\)
\(=3^{37}.\left(-225\right)⋮225\)
Vậy \(81^{10}-27^{13}-9^{21}⋮225\)
\(A=\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2002}-1\right)\left(\frac{1}{2003}-1\right)\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)...\left(-\frac{2001}{2002}\right)\left(-\frac{2002}{2003}\right)\)
\(=\frac{-1.\left(-2\right).....\left(-2001\right)\left(-2002\right)}{2.3....2002.2003}\)
\(=\frac{1}{2003}\)
\(\left(\frac{1}{9}\right)^{2015}.9^{2015}-96^2:24^2=1^{2015}-4^2=1-16=-15\)
\(16\frac{2}{7}:\left(\frac{-3}{5}\right)-28\frac{2}{7}:\left(\frac{-3}{5}\right)=\left(16\frac{2}{7}-28\frac{2}{7}\right):\left(\frac{-3}{5}\right)=-12.\frac{-5}{3}=20\)
\(\left(-2\right)^3.\left(\frac{3}{4}-0,25\right):\left(2\frac{1}{4}-1\frac{1}{6}\right)=-8.\frac{1}{2}:\frac{13}{12}=-8.\frac{1}{2}.\frac{12}{13}=\frac{-48}{13}\)
Lời giải:
Xét công thức tổng quát:
$1+2+3+...+n=\frac{n(n+1)}{2}$
$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$
Thay $n=2,3,...,2006$ ta thu được:
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)
\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
Lời giải:
Xét công thức tổng quát:
$1+2+3+...+n=\frac{n(n+1)}{2}$
$\Rightarrow 1-\frac{1}{1+2+3+...+n}=1-\frac{2}{n(n+1)}=\frac{(n-1)(n+2)}{n(n+1)}$
Thay $n=2,3,...,2006$ ta thu được:
\(A=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}....\frac{2005.2008}{2006.2007}\)
\(=\frac{(1.2.3...2005)(4.5.6...2008)}{(2.3.4...2006)(3.4.5...2007)}=\frac{1}{2006}.\frac{2008}{3}=\frac{1004}{3009}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right).....\left(\frac{1}{2004}-1\right)\left(\frac{1}{2005}-1\right)\)
\(=\frac{-1}{2}.\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2003}{2004}\right)\left(-\frac{2004}{2005}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{2003}{2004}.\frac{2004}{2005}\)
\(=\frac{1}{2005}\)
Ta có : \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right).......\left(\frac{1}{2005}-1\right)\)
\(=-\frac{1}{2}.\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)........\left(-\frac{2004}{2005}\right)\)
\(=\frac{-1}{2}.\frac{2}{-3}.\frac{-3}{4}..........\frac{2004}{-2005}\)
\(=\frac{-1}{-2005}=\frac{1}{2005}\)