Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\sum\limits^3_{i=0}C_3^i\left(x+x^2\right)^i.\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k\left(2x\right)^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}C_3^i.C_i^jx^j.\left(x^2\right)^{i-j}\left(\dfrac{1}{4}\right)^{3-i}\sum\limits^{15}_{k=0}C_{15}^k.2^k.x^k\)
\(=\sum\limits^3_{i=0}\sum\limits^i_{j=0}\sum\limits^{15}_{k=0}C_3^iC_i^jC_{15}^k\left(\dfrac{1}{4}\right)^{3-i}.2^k.x^{2i+k-j}\)
Số hạng chứa \(x^{13}\) thỏa mãn:
\(\left\{{}\begin{matrix}0\le i\le3\\0\le j\le i\\0\le k\le15\\2i+k-j=13\end{matrix}\right.\)
\(\Rightarrow\left(i;j;k\right)=\left(0;0;13\right);\left(1;0;12\right);\left(1;1;11\right);\left(2;0;11\right);\left(2;1;10\right);\left(2;2;9\right);\left(3;0;10\right);\left(3;1;9\right)\)
\(\left(3;2;8\right);\left(3;3;7\right)\) (quá nhiều)
Hệ số....
\(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}\) hữu hạn \(\Rightarrow f\left(x\right)+1=0\) có nghiệm \(x=2\Rightarrow f\left(2\right)=-1\)
\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{f\left(x\right)+2x+1}-x}{x^2-4}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{f\left(x\right)+2x+1}+x}.\dfrac{\left(\sqrt{f\left(x\right)+2x+1}-x\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\dfrac{f\left(x\right)+1-x\left(x-2\right)}{x-2}\)
\(=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x+2\right)\left(\sqrt{f\left(x\right)+2x+1}+x\right)}.\left(\lim\limits_{x\rightarrow2}\dfrac{f\left(x\right)+1}{x-2}-\lim\limits_{x\rightarrow2}\dfrac{x\left(x-2\right)}{x-2}\right)\)
\(=\dfrac{1}{4\left(\sqrt{4}+2\right)}.\left(a-2\right)=\dfrac{a-2}{16}\)
Để hàm số có đạo hàm tại x=0 phải thỏa mãn 2 điều kiện, đó là hàm số liên tục tại x=0 và có đạo hàm bên trái bằng đạo hàm bên phải
Để hàm số liên tục tại x=0 \(\Leftrightarrow\lim\limits_{x\rightarrow0^+}=\lim\limits_{x\rightarrow0^-}=f\left(0\right)\Leftrightarrow2=2\left(tm\right)\)
\(f'\left(0^+\right)=\lim\limits_{x\rightarrow0^+}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^+}\dfrac{mx^2+2x+2-2}{x}=\lim\limits_{x\rightarrow0^+}\dfrac{x\left(mx+2\right)}{x}=2\)
\(f'\left(0^-\right)=\lim\limits_{x\rightarrow0^-}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0^-}\dfrac{nx+2-2}{x}=n\)
\(\Rightarrow\left\{{}\begin{matrix}m\in R\\n=2\end{matrix}\right.\)
\(f\left(0^+\right)=f\left(0^-\right)\Leftrightarrow n=2\)
Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)
Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)
Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh
Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)
\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh
Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)
Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)
\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)
\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))
Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)
Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):
- Với \(x=0\Rightarrow f\left(1\right)=1\)
- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)
- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)
Vậy \(f\left(x\right)=x\) là hàm cần tìm
Gọi số hạng có bậc cao nhất của \(f\left(x\right)\) là \(a_n.x^n\)
\(\Rightarrow\) Số hạng bậc cao nhất của \(16f\left(x^2\right)\) là \(16.\left(a_nx^n\right)^2=16a_n^2.x^{2n}\)
Số hạng bậc cao nhất của \(f^2\left(2x\right)\) là: \(\left(a_n.2x^n\right)^2=4a_n^2.x^{2n}\)
Đồng nhất hệ số 2 vế ta được: \(16a_n^2=4a_n^2\Rightarrow a_n=0\)
Hay mọi số hạng chứa x của đa thức đã cho đều có hệ số bằng 0
\(\Rightarrow\) Đa thức đã cho là đa thức hằng
Hay \(f\left(x\right)=k\) với mọi x
Thay vào đề bài: \(16k=k^2\Rightarrow\left[{}\begin{matrix}k=0\\k=16\end{matrix}\right.\)
Vậy có 2 đa thức thỏa mãn: \(\left[{}\begin{matrix}f\left(x\right)\equiv0\\f\left(x\right)\equiv16\end{matrix}\right.\)