Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^2-1=2y^2
<=>(x-1)(x+1)=2y^2=y.2y
+)x-1=2=>x=3
X+1=y^2=>y^2=4=>y=2
+)x-1=y=>x=y+1
X+1=2y=>y+1+1=2y=>y=2
=>x=2+1=3
Vậy (x,y)=(3;2)
x2-12y2=1 <=> (x-1)(x+1)=12y2=>x-1 thuộc các giá trị 1,2,3,4,6,12,y,y2
kết quả : ko có giá trị tm
Bạn gõ thừa số "1" thì phải ?
Đặt \(\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=m\) (với \(m\in Q\))
\(\Rightarrow x+\sqrt{2017}y=my+mz\sqrt{2017}\)\(\Leftrightarrow\left(x-my\right)-\sqrt{2017}\left(y-mz\right)=0\)(*)
+) Nếu \(y-mz\ne0\) thì: \(\sqrt{2017}=\frac{-\left(x-my\right)}{y-mz}\) (1)
Ta có: \(x;y;z\in N;m\in Q\Rightarrow\frac{-\left(x-my\right)}{y-mz}\in Q\) (2)
\(\sqrt{2017}\in I\) (Do 2017 không phải số chính phương) (3)
Từ (1); (2) và (3) => Mâu thuẫn => \(y-mz\ne0\)(loại)
+) Nếu \(y-mz=0\) thì: Từ (*) => \(\hept{\begin{cases}x-my=0\\y-mz=0\end{cases}\Rightarrow}\hept{\begin{cases}x=my\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}m=\frac{x}{y}=\frac{y}{z}\\x=m^2z\\y=mz\end{cases}}\Rightarrow\hept{\begin{cases}y^2=xz\\x=m^2z\\y=mz\end{cases}}\)
Đặt \(x^2+y^2+z^2=p\) (p nguyên tố) \(\Rightarrow\left(x+z\right)^2-2xz+y^2=p\)
\(\Rightarrow\left(x+z\right)^2-y^2=p\)(Do y2 = xz) \(\Leftrightarrow\left(x+z-y\right)\left(x+y+z\right)=p\)
Ta thấy x;y;z thuộc N* => \(x+z-y\le x+y+z\)
Nên \(\hept{\begin{cases}x+z-y=1\left(4\right)\\x+y+z=p\end{cases}}\)(Vì p là số nguyên tố)
Lại có: \(x^2+y^2+z^2=p\Rightarrow m^4z^2+m^2z^2+z^2=p\) (Do x = m2z; y = mz)
\(\Leftrightarrow z^2\left(m^4+m^2+1\right)=p\Rightarrow\hept{\begin{cases}z=1\\m^4+m^2+1=p\end{cases}}\)(p nguyên tố)
Thay z=1 vào (4) ta có: \(x-y+1=1\Leftrightarrow x=y\)
\(m^4+m^2+1=p\Leftrightarrow\left(m^2+m+1\right)\left(m^2-m+1\right)=p\)
\(\Rightarrow m^2-m+1=1\Leftrightarrow m^2-m=0\Leftrightarrow m\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=1\end{cases}}\)
+) Nếu m=0 thì: \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=0\Rightarrow x+y\sqrt{2017}=0\)(Do \(y+z\sqrt{2017}\ne0\))
Mà x;y thuộc N* nên \(x+y\sqrt{2017}>0\)=> Loại.
+) Nếu m=1 thì \(x+y\sqrt{2017}=y+z\sqrt{2017}\Rightarrow y\sqrt{2017}=z\sqrt{2017}\)(x=y)
\(\Rightarrow y=z\Rightarrow x=y=z=1\) (Vì z=1)
Khi đó: \(\hept{\begin{cases}\frac{x+\sqrt{2017}y}{y+\sqrt{2017}z}=1\\x^2+y^2+z^2=3\end{cases}}\) (thỏa mãn). Vậy x=y=z=1.
- Với \(x=1\) ko thỏa mãn
- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn
- Với \(x\ge3\)
\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)
\(\Rightarrow2\left(x+y\right)⋮xy+2\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)
\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)
\(\Rightarrow y=\left\{1;2;3;4\right\}\)
Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu
Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)
\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m
Tương tự...
Lời giải:
Đặt $x+y=a; 3x+2y=b$ với $a,b\in\mathbb{Z}$ thì pt trở thành:
$ab^2=b-a-1$
$\Leftrightarrow ab^2+a+1-b=0$
$\Leftrightarrow a(b^2+1)+(1-b)=0$
$\Leftrightarrow a=\frac{b-1}{b^2+1}$
Để $a$ nguyên thì $b-1\vdots b^2+1$
$\Rightarrow b^2-b\vdots b^2+1$
$\Rightarrow (b^2+1)-(b+1)\vdots b^2+1$
$\Rightarrow b+1\vdots b^2+1$
Kết hợp với $b-1\vdots b^2+1$
$\Rightarrow (b+1)-(b-1)\vdots b^2+1$
$\Rightarrow 2\vdots b^2+1$
Vì $b^2+1\geq 1$ nên $b^2+1=1$ hoặc $b^2+1=2$
Nếu $b^2+1=1\Rightarrow b=0$. Khi đó $a=\frac{b-1}{b^2+1}=-1$
Vậy $x+y=-1; 3x+2y=0\Rightarrow x=2; y=-3$ (tm)
Nếu $b^2+1=2\Rightarrow b=\pm 1$
Với $b=1$ thì $a=\frac{b-1}{b^2+1}=0$
Vậy $x+y=0; 3x+2y=1\Rightarrow x=1; y=-1$ (tm)
Với $b=-1$ thì $a=-1$
Vậy $x+y=-1; 3x+2y=-1\Rightarrow x=1; y=-2$ (tm)
Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]
Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2
Thay các giá trị xx vào biểu thức ta tìm được yy
Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}
k mik nha