K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

can you hẹp me?? mk đang cần gấp 

24 tháng 12 2019

Vì gcd(x,x2+1)=1gcd(x,x2+1)=1 suy ra
Hoặc xy−1|;xxy−1|;x hoặc xy−1|x2+1xy−1|x2+1
Trường hợp 1 ta có: {x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]{x−1≤xy−1≤xxy−1|x}⇒[xy−1=xxy−1=1]⇒[x(y−1)=1xy=2]⇒[x=1;y=2x=2;y=1]

Trường hợp 2 xét modulo xx ta có: {xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2{xy−1≡−1(modx)x2+1≡1(modx)}⇒−1≡1(modx)⇒2≡0(modx)⇒x=1 hoặc x=2

Thay các giá trị xx vào biểu thức ta tìm được yy

Cuối cùng các giá trị phải tìm là (x,y)∈{(1,2);(1,3);(2,1);(2,3)}(x,y)∈{(1,2);(1,3);(2,1);(2,3)}

k mik nha

NV
14 tháng 3 2022

- Với \(x=1\) ko thỏa mãn

- Với \(x=2\Rightarrow\dfrac{2}{2y+2}\in Z\Rightarrow\dfrac{1}{y+1}\in Z\Rightarrow y=\left\{-2;0\right\}\) ko thỏa mãn

- Với \(x\ge3\)

\(x^2-2⋮xy+2\Rightarrow x\left(xy+2\right)-y\left(x^2-2\right)⋮xy+2\)

\(\Rightarrow2\left(x+y\right)⋮xy+2\)

\(\Rightarrow\left(x-2\right)\left(y-2\right)\le2\)

\(\Rightarrow y-2\le\dfrac{2}{x-2}\le\dfrac{2}{3-2}=2\Rightarrow y\le4\)

\(\Rightarrow y=\left\{1;2;3;4\right\}\)

Lần lượt thay 3 giá trị của y vào pt biểu thức ban đầu

Ví dụ: \(y=1\Rightarrow\dfrac{x^2-2}{x+2}\in Z\Rightarrow x-2+\dfrac{2}{x+2}\in Z\)

\(\Rightarrow x+2=Ư\left(2\right)\Rightarrow\) ko tồn tại x nguyên dương t/m

Tương tự...

14 tháng 3 2022

Em cả mơn thầy 

Thầy mãi đỉnh

25 tháng 7 2023

\(x^2+y^2+2\left(x+y\right)-xy=0\)

\(\Leftrightarrow4x^2-4xy+4y^2+8\left(x+y\right)=0\)

\(\Leftrightarrow\left(2x-y\right)^2+4\left(2x-y\right)+4+3y^2+12y+12=-16\)

\(\Leftrightarrow\left(2x-y+2\right)^2+3\left(y+2\right)^2=-16\)

Dễ thấy VT \(\ge0\) ; VP < 0 nên phương trình vô nghiệm 

24 tháng 7 2023

\(x^2+y^2-2\left(x+y\right)=xy\)

\(\Rightarrow x^2-2x+1+y^2-2y+1=2+xy\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2=2+xy\)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2\ge2\left(x-1\right)\left(y-1\right)\) (Bất đẳng thức Cauchy)

19 tháng 3 2017

Đặt \(\hept{\begin{cases}x+y=a\\xy=b\end{cases}}\) thì ta có phương trình:

\(ab^2+a=3+b\Leftrightarrow a\left(b^2+1\right)=b+3\)

\(\Leftrightarrow a=\frac{b+3}{b^2+1}\). Nếu \(b=3\) vô nghiệm thì xét \(b\ne3\)

Khi đó: \(a=\frac{b+3}{b^2+1}\Leftrightarrow a\left(b-3\right)=\frac{b^2-9}{b^2+1}\)\(=\frac{b^2+1-10}{b^2+1}\)

\(=\frac{b^2+1}{b^2+1}-\frac{10}{b^2+1}=1-\frac{10}{b^2+1}\)

Suy ra \(b^2+1\inƯ\left(10\right)=....\)

Tự làm nốt nhá, trở thành bài lớp 6 r` :)

19 tháng 3 2017

Mơn nhìu ạ