Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
a,-3/5.2/7+-3/7.3/5+-3/7
=-3/7.2/5+(-3/7).3/5+(-3/7)
=-3/7(2/5+3/5+1)
=-3/7.2
=-6/7
a) \(\left(\frac{5}{6}-\frac{2}{3}\right)+\frac{1}{4}:x=-4\)
\(\Rightarrow\frac{1}{6}+\frac{1}{4}:x=-4\)
\(\Rightarrow\frac{1}{4}:x=-4-\frac{1}{6}\)
\(\Rightarrow\frac{1}{4}:x=-\frac{25}{6}\)
\(\Rightarrow\)\(x=\frac{1}{4}:-\frac{25}{6}\)
\(\Rightarrow x=-\frac{3}{50}\)
b) \(\left|2x-\frac{1}{3}\right|+1=\frac{5}{6}\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|=\frac{5}{6}-1\)
\(\Rightarrow\left|2x-\frac{1}{3}\right|=-\frac{1}{6}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=-\frac{1}{6}\\2x-\frac{1}{3}=\frac{1}{6}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=-\frac{1}{6}+\frac{1}{3}\\2x=\frac{1}{6}+\frac{1}{3}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=\frac{1}{6}\\2x=\frac{1}{2}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{6}:2\\x=\frac{1}{2}:2\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{1}{4}\end{cases}}\)
a) \(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{302\cdot305}\)
\(B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{302\cdot305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{302}-\frac{1}{305}\right)\)
\(B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{305}\right)=\frac{1}{3}\cdot\frac{303}{610}=\frac{101}{610}\)
b) \(C=\frac{6}{1\cdot4}+\frac{6}{4\cdot7}+....+\frac{6}{202\cdot205}\)
\(C=2\left(\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{202\cdot205}\right)=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\right)\)
\(=2\left(1-\frac{1}{205}\right)=2\cdot\frac{204}{205}=\frac{408}{205}\)
c) \(D=\frac{5^2}{1\cdot6}+\frac{5^2}{6\cdot11}+...+\frac{5^2}{266\cdot271}\)
\(D=5\left(\frac{5}{1\cdot6}+\frac{5}{6\cdot11}+...+\frac{5}{266\cdot271}\right)\)
\(D=5\left(1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\right)=5\left(1-\frac{1}{271}\right)=5\cdot\frac{270}{271}=\frac{1350}{271}\)
d) \(E=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{5}{16}\cdot...\cdot\frac{9999}{10000}=\frac{3\cdot8\cdot15\cdot...\cdot9999}{4\cdot9\cdot16\cdot...\cdot10000}=\frac{3}{10000}\)
e) \(F=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(F=\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{2500}\right)\)
\(F=\frac{3}{4}\cdot\frac{8}{9}\cdot\frac{15}{16}\cdot...\cdot\frac{2499}{2500}=\frac{3\cdot8\cdot15\cdot...\cdot2499}{4\cdot9\cdot16\cdot...\cdot2500}=\frac{3}{2500}\)
a. \(B=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{302.305}\)
\(\Rightarrow3B=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{302.305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{302}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{1}{2}-\frac{1}{305}\)
\(\Rightarrow3B=\frac{303}{610}\)
\(\Rightarrow B=\frac{101}{610}\)
b. \(C=\frac{6}{1.4}+\frac{6}{4.7}+...+\frac{6}{202.205}\)
\(\Rightarrow\frac{1}{2}C=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{202.205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{202}-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=1-\frac{1}{205}\)
\(\Rightarrow\frac{1}{2}C=\frac{204}{205}\)
\(\Rightarrow C=\frac{408}{205}\)
c. \(D=\frac{5^2}{1.6}+\frac{5^2}{6.11}+...+\frac{5^2}{266.271}\)
\(\Rightarrow\frac{1}{5}D=\frac{5}{1.6}+\frac{5}{6.11}+...+\frac{5}{266.271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{266}-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=1-\frac{1}{271}\)
\(\Rightarrow\frac{1}{5}D=\frac{270}{271}\)
\(\Rightarrow D=\frac{1350}{271}\)
a) \(\frac{1}{3}-\frac{-1}{6}=\frac{1}{3}+\frac{1}{6}=\frac{1}{2}\)
b) \(2\frac{1}{3}+4\frac{1}{5}=\frac{7}{3}+\frac{21}{5}=\frac{98}{15}\)
c) \(\frac{4}{9}-\frac{13}{3}-\frac{4}{9}-\frac{10}{3}=\left(\frac{4}{9}-\frac{4}{9}\right)-\left(\frac{13}{3}+\frac{10}{3}\right)\)
\(=0-\frac{23}{3}=\frac{-23}{3}\)
d) \(4-\left(2-\frac{5}{2}\right)+0,5=4-2+\frac{5}{2}+\frac{1}{2}=2+3=5\)
Tìm tất cả các số nguyên x để:
a. (-6)\(⋮\)(2x - 1)
b. (3x - 2)\(⋮\)(x + 3)
Giải chi tiết nhé! Cảm ơn.
a) \(-6⋮\left(2x-1\right)\)
\(\Leftrightarrow2x-1\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Ta có bảng sau :
\(2x-1\) | \(-6\) | \(-3\) | \(-2\) | \(-1\) | \(1\) | \(2\) | \(3\) | \(6\) |
\(x\) | \(-1\) | \(0\) | \(1\) | \(2\) |
Vậy \(x\in\left\{-1;0;1;2\right\}\)
b) \(\left(3x-2\right)⋮\left(x-3\right)\)
\(\Leftrightarrow\left(3x+9-7\right)⋮\left(x+3\right)\)
Vì \(\left(3x+9\right)⋮\left(x+3\right)\)nên \(7⋮\left(x+3\right)\)
\(\Leftrightarrow x+3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta có bảng sau :
\(x+3\) | \(-7\) | \(-1\) | \(1\) | \(7\) |
\(x\) | \(-10\) | \(-4\) | \(-2\) | \(4\) |
Vậy \(x\in\left\{-10;-4;-2;4\right\}\)
\(\left(-6\right)⋮\left(2x-1\right)\Rightarrow2x-1\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Vì 2x-1chia 2 dư 1
\(\Rightarrow2x-1\in\left\{\pm1;\pm3\right\}\)
\(\Rightarrow x\in\left\{1;0;2;-1\right\}\)
Vậy......................................
\(\left(3x+2\right)⋮\left(x+3\right)\)
\(\Rightarrow3\left(x+3\right)-7⋮x-3\)
\(\Rightarrow7⋮x-3\Rightarrow x-3\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x\in\left\{4;2;10;-4\right\}\)
Vậy....................................
Đáp án cần chọn là: A