Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5n + 14 ⋮ n + 2
5n + 10 + 4 ⋮ n + 2
5( n + 2 ) + 4 ⋮ n + 2
Vì 5( n + 2 ) ⋮ n + 2
=> 4 ⋮ n + 2
=> n + 2 thuộc Ư(4) = { 1; 2; 4; -1 -2; -4 }
=> n thuộc { -1; 0; 2; -3; -4; -6 }
Vậy.........
\(5n+14⋮n+2\)
\(5\left(n+2\right)+4⋮n+2\)
\(4⋮n+2\)
Vì n là stn nên n + 2 > 2
Ta có bảng
n + 2 | 2 | 4 |
n | 0 | 2 |
Vậy \(n\in\left\{0;2\right\}\)
\(5\left(n+2\right)+4⋮\left(n+2\right)\)
\(\Rightarrow\left(n+2\right)\inƯ\left(4\right)=\left\{-4;-2-1;1;2;4\right\}\)
Mà \(n\in N\)
\(\Rightarrow n\in\left\{0;2\right\}\)
5n + 14 = 5n + 10 + 4
= 5(n + 2) + 4
Để (5n + 14) ⋮ (n + 2) thì 4 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ n ∈ {-6; -4; -3; -2; -1; 0; 2}
Mà n ∈ ℕ
⇒ n ∈ {0; 2}
Giải thích các bước giải:
5n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+25n+14n+2=5n+10+4n+2=5.(n+2)+4n+2=5+4n+2
5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)5n+14⋮n+2⇒n+2∈Ư(5n+14)⇔n+2∈Ư(4)
⇒n+2∈⇒n+2∈{1;2;4}{1;2;4}
n+2=1⇒n=−1n+2=1⇒n=−1
n+2=2⇒n=0n+2=2⇒n=0
n+2=4⇒n=2n+2=4⇒n=2
Mà n∈Nn∈N
Vậy n∈n∈{0;2}
\(5n+14⋮n+2\)
\(\Rightarrow5n+10+4⋮n+2\)
\(\Rightarrow5\left(n+2\right)+4⋮\left(n+2\right)\)
Vậy n+2 là Ư(4)=(1;2;4)
\(n+2=1\Rightarrow n=-1\)
\(n+2=2\Rightarrow n=0\)
\(n+2=4\Rightarrow n=2\)
Vậy có 3 số tự nhiên n thỏa mãn
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)\)và \(n+2\ge2\).
Suy ra \(n+2\in\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).
\(5n+14=5n+10+4=5\left(n+2\right)+4⋮\left(n+2\right)\Leftrightarrow4⋮\left(n+2\right)\)
mà \(n\)là số tự nhiên nên \(n+2\inƯ\left(4\right)=\left\{2,4\right\}\Leftrightarrow n\in\left\{0,2\right\}\).
\(\dfrac{5n+14}{n+2}=\dfrac{5n+10+4}{n+2}=5+\dfrac{4}{n+2}`
Để \(5n+14 \vdots n+2\) thì \(5+\dfrac{4}{n+2} \in Z\)
\(=>n+2 \in Ư_{4}\)
Mà \(Ư_{4}=\({\(\pm 1;\pm 2;\pm 4\)}
`@n+2=1=>n=-1` (ko t/m)
`@n+2=-1=>n=-3` (ko t/m)
`@n+2=2=>n=0` (t/m)
`@n+2=-2=>n=-4` (ko t/m)
`@n+2=4=>n=2` (t/m)
`@n+2=-4=>n=-6` (ko t/m)
Vậy \(n \in\){`0;2`}