Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(7^n+147\) là số chính phương
=> Đặt: \(7^n+147\) với a là số nguyên khi đó ta có:
\(7^n+147=a^2\)không mất tính tổng quát g/s a nguyên dương
mà: n là số tự nhiên nên \(7^n⋮7\); \(147=7^2.3⋮7\)=> \(a^2⋮7\)=> \(a⋮7\)=> \(a^2⋮7^2\)
=> \(7^n⋮7^2\)=> n \(\ge\)2
+) Với n = 2k khi đó: \(k\ge1\)
Ta có: \(7^{2k}+147=a^2\)
<=> \(\left(a-7^k\right)\left(a+7^k\right)=147\)
Vì: \(\hept{\begin{cases}0< a-7^k< a+7^k\\a-7^k;a+7^k⋮7\end{cases}}\)
Do đó: \(\hept{\begin{cases}a+7^k=21\\a-7^k=7\end{cases}}\Leftrightarrow7^k=7\Leftrightarrow k=1\)=> n = 2
Thử lại thỏa mãn
+) Với n = 2k + 1 ta có:
\(7^{2k+1}:4\) dư -1
\(147\): 4 dư 3
=> \(7^{2k+1}+147\) chia 4 dư 2
mà số chính phương chia 4 bằng 0 hoặc 1
=> Loại
Vậy: n = 2
ta có abc^2 có tận cùng là abc nên c chỉ có thể =1;5;6
nếu c=1thi ab1^2-ab1=1000n (n là 1 số tự nhiên)
suy ra ab1(ab1-1)=1000n suy ra ab1.ab0=1000n suy ra ab1.ab=100n suy ra b=0
tức là a01.a0=100n suy ra a01.a=10n suy ra a=0 dieu vo li
tương tự với a=6 và a=5 thì ta chỉ có 1 kết quả là 625
ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3
theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2
đặt 9n+11=a(a+1) với a là số nguyên dương
9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1
<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45
vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau
th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)
từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)
th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)
từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)
th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)
từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n
vậy n=1
Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)
Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)
Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)
Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1