Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
Tìm các số nguyên dương n sao cho 36n-6 là tích của hai hoặc nhiều hơn các số nguyên dương liên tiếp
Đặt \(S=36^n-6\)
+Với n=1 => \(S=30=5.6\)thỏa mãn điều kiện đề bài
+Với n>1 :Ta thấy S chia hết cho 5 và 6 và không chia hết cho 4
=> \(S=5\cdot6\cdot.........\)
Do vậy để thỏa mãn đề bài thì S phải chia hết cho 7
Mà \(36^n=\left(6^n\right)^2\)chia 7 luôn dư 0,1,2,3,4
nên S không chia hết cho 7
=> với n>1 thì không có giá trị nào của n thỏa mãn đề bài
Vậy n=1 là giá trị duy nhất thỏa mãn đề bài
a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương
Biến đổi phương trình ta có :
\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :
TH1 : \(2n-1=3u^2;2n+1=v^2\)
TH2 : \(2n-1=u^2;2n+1=3v^2\)
TH1 :
\(\Rightarrow v^2-3u^2=2\)
\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )
Còn lại TH2 cho ta \(2n-1\)là số chính phương
b) Ta có :
\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)
\(\Leftrightarrow n^2=3k^2+3k+1\)
\(\Leftrightarrow4n^2-1=12k^2+12k+3\)
\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)
- Xét 2 trường hợp :
TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)
TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)
+) TH1 :
Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )
+) TH2 :
Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )
Tìm tất cả các số nguyên dương k sao cho tồn tại số nguyên dương n thỏa mãn 2n+11 chia hết cho 2k-1.
Để tìm tất cả các số nguyên dương k thỏa mãn điều kiện đã cho, ta sẽ giải phương trình theo n.
2n + 11 chia hết cho 2k - 1 có nghĩa là tồn tại một số nguyên dương m sao cho:
2n + 11 = (2k - 1)m
Chuyển biểu thức trên về dạng phương trình tuyến tính:
2n - (2k - 1)m = -11
Ta nhận thấy rằng nếu ta chọn một số nguyên dương nào đó, ta có thể tìm được một số nguyên dương k tương ứng để phương trình trên có nghiệm. Do đó, ta chỉ cần tìm tất cả các số nguyên dương n thỏa mãn phương trình trên.
Để giải phương trình này, ta có thể sử dụng thuật toán Euclid mở rộng (Extended Euclidean Algorithm). Tuy nhiên, trong trường hợp này, ta có thể tìm được một số giá trị n và k thỏa mãn phương trình bằng cách thử từng giá trị của n và tính giá trị tương ứng của k.
Dưới đây là một số cặp giá trị n và k thỏa mãn phương trình đã cho:
(n, k) = (3, 2), (7, 3), (11, 4), (15, 5), (19, 6), …
Từ đó, ta có thể thấy rằng có vô số giá trị n và k thỏa mãn phương trình đã cho.
ta có tích từ 3 stn liên tiếp trở lên thì chia hết cho 3
theo đề bài 9n+11 là tích k số tự nhiên liên tiếp mà 9n+11 không chia hết cho 3 nên k=2
đặt 9n+11=a(a+1) với a là số nguyên dương
9n+11=a(a+1) <=> 4.9n+45=4a2+4a+1
<=> (2a+1)2-(2.3n)2=45 <=> (2a+1-2.3n)(2a+1+2.3n)=45
vì a,n nguyên dương và 2a+1+2.3n >=9 nên xảy ra các trường hợp sau
th1: \(\hept{\begin{cases}2a+1+2\cdot3^n=9\left(1\right)\\2+1+2\cdot3^n=5\left(2\right)\end{cases}}\)
từ (1) và (2) ta có 4a+2=14 <=> a=3 => 9n+11=12 <=> 9n=1 <=> n=0 (loại)
th2: \(\hept{\begin{cases}2a+1-2\cdot3^n=15\left(3\right)\\2a+1+2\cdot3^n=3\left(4\right)\end{cases}}\)
từ (3) và (4) ta có 4a+2=18 <=> a=4 => 9n+11=20 <= 9n=9 <=> n=1 (tm)
th3: \(\hept{\begin{cases}2a+1-2\cdot3^n=45\left(5\right)\\2a+1+2\cdot3^n=1\left(6\right)\end{cases}}\)
từ (5) và (6) ta có 4a+2=46 <=> a=11 => 9n+11=132 <=> 9n=121 => không tồn tại n
vậy n=1
Vì \(9^n+11⋮̸3\)nên k<3 => k=2 (k>1) (với n thuộc N*)
Ta có: \(9^n-1⋮\left(9-1\right)\Leftrightarrow9^n-1⋮8\Leftrightarrow9^n-1⋮4\Leftrightarrow9^n+11⋮4\)
Mà \(9^n+11\)là tích của hai STN liên tiếp nên 1 trong 2 số bằng 4, số còn lại là 5 (vì 9^n+11 không chia hết cho 3)
Từ đó, ta có 9^n+11=4*5=20 => 9^n=9 => n=1