\(2.16\ge2^n\ge4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2017

2.16 ≥ \(2^n\) ≥ 4

⇒ 32 ≥ \(2^n\) ≥4

\(2^5\)\(2^n\)\(2^2\)

⇒ 5 ≥ n ≥ 2

⇒ n ∈ {5;4;3;2}

15 tháng 12 2017

\(2.16\ge2^n\ge4\)

\(\Rightarrow32\ge2^n>4\)

\(\Rightarrow2^5\ge2^n>2^2\)

\(\Rightarrow n\le\left\{3;4;5\right\}\)

\(2.16\ge2^n\ge4\Rightarrow2.2^4\ge2^n\ge2^2\Rightarrow2^5\ge2^n\ge2^2\Rightarrow5\ge n\ge2\Rightarrow n=\left(5;4;3;2\right)\)

5 tháng 6 2017

a).

\(2.16=2.2^4=2^5\\ 4=2^2\)

theo đề bài, ta có: \(2^5\ge2^n>2^2\Rightarrow5\ge n>2\)

vì n là số tự nhiên nên : \(n=5;4;3\)

b).

\(9.27=3^2.3^3=3^5\\ 243=3^5\)

theo đề bài, ta có: \(3^5\le3^n\le3^5\Rightarrow5\le n\le5\)

=> n=5

5 tháng 6 2017

Giải:

a)2.16\(\ge\)2n>4

2.24\(\ge\)2n>22

25\(\ge\)2n>22

\(\Rightarrow\)5\(\ge\)n>2

\(\Rightarrow\)n\(\in\){3;4;5}

b)9.27\(\le\)3n\(\le\)243

32.33\(\le\)3n\(\le\)35

35\(\le\)3n\(\le\)35

5\(\le\)n\(\le\)5

\(\Rightarrow\)n=5

24 tháng 7 2018

a, \(2.16\ge2^n>4\Rightarrow2^5\ge2^n>2^2\Rightarrow5\ge n>2\Rightarrow n\in\left\{3;4;5\right\}\)

b,\(9.27\le3^n\le243\Rightarrow3^5\le3^n\le3^5\Rightarrow n=5\)

15 tháng 7 2016

a, \(2.16\ge2^n>4\)

\(\Leftrightarrow2.2^4\ge2^n>2^2\)

\(\Leftrightarrow2^5>2^n>2^2\)

\(\Leftrightarrow5\ge n>2\)

Vậy \(n\in\left\{3;4;5\right\}\)

b, Câu b làm tương tự nhé!

15 tháng 7 2016

a)2^5 lớn hơn hoặc bằng 2^n lớn hơn 2^2

suy ra n=4;3

b)243 nhỏ hơn , bằng 3^n nhỏ hơn hoặc = 243

suy ra n=5

19 tháng 9 2016

\(2\times2^4\ge2^n>4\)

\(2^5\ge2^n>2^2\)

\(\Rightarrow5\ge n>2\)

vậy x = 3 ; 4 ; 5

23 tháng 9 2016

bn lm giống mk

2.32_>2>8

=>2.25_>2n>23

=>26_>2n>23

=>n{6;5;4}

HT~

7 tháng 11 2021

TL :

\(2.32>2^n\)\(>8\)

\(4^3\)> 2n > 8

3 < n < 8

n E = { 3 ; 4 ; 5 ; 6 ; 7 }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }

Nhận xét:

+) Với x \(\geq\) 0 thì | x | + x = 2x

+) Với x < 0 thì | x | + x = 0

Do đó : | x | + x luôn là số chẵn với mọi x \(\in \) Z

Áp dụng nhận xét trên thì :

| n - 2016 | + n - 2016 là số chẵn với n - 2016 \(\in \) Z 

\(\implies\) 2m + 2015 là số chẵn 

\(\implies\) 2m là số lẻ

\(\implies\) m = 0

Khi đó:

| n - 2016 | + n - 2016 = 2016

+) Nếu n < 2016 ta được:

 - ( n - 2016 ) + n - 2016 =2016

\(\implies\) 0 = 2016

\(\implies\) vô lí 

\(\implies\) loại 

+) Nếu n \(\geq\)  2016 ta được :

( n - 2016 ) + n - 2016 = 2016

\(\implies\) n - 2016 + n - 2016 = 2016

\(\implies\) 2n - 2 . 2016 = 2016

​​\(\implies\)​ 2 ( n - 2016 ) = 2016

\(\implies\) n - 2016 = 2016 : 2

\(\implies\) n - 2016 = 1008

\(\implies\) n = 1008 + 2016

\(\implies\) n = 3024 

\(\implies\)  thỏa mãn 

Vậy ( m ; n ) \(\in \) { ( 0 ; 3024 ) }