K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

p=3; 5

Chúc bạn học giỏi nha!

Trả lời:

p=3=>p2+14=23

Chỉ có 1 giá trị p=3 thôi!

AH
Akai Haruma
Giáo viên
30 tháng 7 2021

Lời giải:

Nếu $p=2$ thì $p^2+11=15$ chỉ có 4 ước nguyên dương

Nếu $p=3$ thì $p^2+11=20$ có đúng 6 ước nguyên dương

Nếu $p>3$ thì $p$ lẻ

$\Rightarrow p^2\equiv 1\pmod 4$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 4(1)$

$p^2\equiv 1\pmod 3$

$\Rightarrow p^2+11\equiv 12\equiv 0\pmod 3(2)$

Từ $(1);(2)$ suy ra $p^2+11\vdots 12$

Đặt $p^2+11=12k$ với $k$ là số tự nhiên lớn hơn $1$

Lúc này, $p^2+11$ có ít nhất các ước nguyên dương sau: $1,2,3,4,6,12,k, 2k, 3k,4k, 6k, 12k$ (nhiều hơn 6 ước nguyên dương rồi)

Vậy $p=3$

24 tháng 2 2020

Ta có : \(D=4x^4+y^4\)

\(=\left(4x^4+4x^2y^2+y^4\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2\right)-\left(2xy\right)^2\)

\(=\left(2x^2+y^2+2xy\right)\left(2x^2+y^2-2xy\right)\)

Do x,y nguyên dương nên \(2x^2+y^2+2xy>1\)

Do đó để D là số nguyên tố \(\Leftrightarrow\hept{\begin{cases}2x^2+y^2+2xy=1\\2x^2+y^2-2xy=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Thử lại ta có \(D=1\) không là số nguyên tố

Do đó, không có cặp số nguyên dương x.y thỏa mãn đề.

15 tháng 7 2016

Tớ nghĩ là tổng các ước dương nhé .... chứ cộng thêm ước âm thì thành =0 á ...Cũng là số chính phương nhưng bài kiểu này hơi dễ.

Do p là số nguyên tố => \(p^2\) chỉ có các ước là : \(p^2;p;1\)

Ta có: \(p^2+p+1=k^2\left(k\in N\right)\Rightarrow4p^2+4p+1+3=4k^2\) 

\(\Rightarrow\left(2p+1\right)^2+3=4k^2\Rightarrow4k^2-\left(2p+1\right)^2=3\Rightarrow\left(2k-2p-1\right)\left(2k+2p+1\right)=3\)

giờ tìm ước á