Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
(*)
Đặt
Yêu cầu bài toán trở thành: Tìm m để phương trình có nghiệm
Từ đồ thị đã cho, ta suy ra đồ thị của hàm số
Từ đó ta có kể quả thỏa mãn yêu cầu bài toán
Bất phương trình x2-3x+2 ≤ 0 ⇔ 1 ≤ x ≤ 2
Bất phương trình mx2+(m+1) x+m+1 ≥ 0
Xét hàm số f ( x ) = - x - 2 x 2 + x + 1 , 1 ≤ x ≤ 2
Có f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 ∀ x ∈ 1 ; 2
Yêu cầu bài toán ⇔ m ≥ m a x [ 1 ; 2 ] f ( x ) ⇔ m ≥ - 4 7
Chọn C.
Giải bất phương trình x2- 3x+ 2≤ 0 ta được 1≤x≤2.
Bất phương trình mx2+ (m+ 1) x+ m+1≥0
⇔ m ( x 2 + x + 1 ) ≥ - x - 2 ⇔ m ≥ - x - 2 x 2 + x + 1
Xét hàm số f ( x ) = - x - 2 x 2 + x + 1 với 1≤ x≤ 2
Có đạo hàm f ' ( x ) = x 2 + 4 x + 1 ( x 2 + x + 1 ) 2 > 0 , ∀ x ∈ 1 ; 2
Yêu cầu bài toán ⇔ m ≥ m a x [ 1 ; 2 ] f ( x ) ⇔ m ≥ - 4 7
Chọn C.
Đặt t = f ( x ) = x 2 - 4 x + 5 .
ta có f ' ( x ) = x - 2 x 2 - 4 x + 5 và f ' = 0 ⇔ x = 2
Xét x> 0 ta có bảng biến thiên
Khi đó phương trình đã cho trở thành m= t2+ t- 5hay t2+ t- 5-m= 0 (*)
Nếu phương trình (* ) có nghiệm t1; t2 thì t1+ t2= -1.
Do đó (*) có nhiều nhất 1 nghiệ m t ≥ 1.
Vậy phương trình đã cho có đúng 2 nghiệm dương khi và chỉ khi phương trình (*) có đúng 1 nghiệm t ∈ (1; √5).
+ Đặt g(t) = t2+ t- 5. Ta đi tìm m để phương trình (*) có đúng 1 nghiệm t ∈ (1; √5).
Ta có g’(t) = 2t + 1 > 0, ∀ t ∈ (1; √5).
Bảng biến thiên:
Từ bảng biến thiên suy ra là các giá trị cần tìm.
Chọn B.
Đặt .
Sử dụng chức năng MODE 7,
ta tìm
Để phương trình có nghiệm
.
Kết hợp điều kiện ta có .
Vậy có giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Chọn D
Chọn A.