K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2018

Đáp án B

P T ⇔ x − m x 2 + x m + m 2 − 3 x − m x + m = 0  

⇔ x − m x 2 + m x − 3 x + m 2 − 3 m = 0 ⇔ x = m g x = x 2 + m − 3 x + m 2 − 3 m  

PT có 3 nghiệm phân biệt ⇔ g x = 0  có 2 nghiệm phân biệt khác m

⇔ Δ = m − 3 2 − 4 m 2 − 3 m > 0 g m = 3 m 2 − 6 m ≠ 0 ⇔ − 3 m 2 + 6 m + 9 > 0 m ≠ 0 ; m ≠ 6 ⇔ − 1 < m < 3 m ≠ 0 ; m ≠ 2  

9 tháng 7 2019

6 tháng 2 2018

Đáp án C

Phương trình ⇔ − m = x 3 − 12 x − 2 . Điều kiện trở thành đường  y= m cắt đồ thị hàm số y = x 3 − 12 x − 2 tại 3 điểm phân biệt. 

Lập bảng biến thiên của  y = x 3 − 12 x − 2   .

Nhìn vào bảng biến thiên, điều kiện của m là  − m ∈ 14 ; − 18 ⇔ m ∈ − 14 ; 18 .

1 tháng 9 2018

28 tháng 1 2019

18 tháng 5 2018

Đáp án C

Phương pháp:

Đặt 2 x = t t > 0 , đưa về phương trình bậc 2 ẩn t, tìm điều kiện của phương trình bậc 2 ẩn t để phương trình ban đầu có 2 nghiệm phân biệt.

Cách giải: Đặt 2 x = t t > 0 khi đó phương trình trở thành  t 2 − 2 m t + m + 2 = 0 *

Để phương trình ban đầu có 2 nghiệm phân biệt thì phương trình (*) có 2 nghiệm dương phân biệt.

Khi  đó:  Δ ' > 0 S > 0 P > 0 ⇔ m 2 − m − 2 > 0 2 m > 0 m + 2 > 0 ⇔ m > 2 m < − 1 m > 0 m > − 2 ⇒ m > 2

Chú ý và sai lm: Rất nhiều học sinh sau khi đặt ẩn phụ thì quên mất điều kiện t > 0, dẫn đến việc chỉ đi tìm điều kiện đề phương trình (*) có 2 nghiệm phân biệt.

18 tháng 2 2017

22 tháng 12 2019

17 tháng 4 2018

Đáp án D

Phương pháp:

Đánh giá số nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = m + 1

Cách giải:

Số  nghiệm của phương trình f(x) = m + 1 bằng số giao điểm của đồ thị hàm số y = f(x)

và đường thẳng y = m + 1

Để f(x) = m + 1 có 3 nghiệm thực phân biệt thì 2 < m+1 < 4 ó3 < m < 3

15 tháng 10 2019

19 tháng 9 2019